Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2024, Vol. 11 Issue (1) : 169-185    https://doi.org/10.15302/J-FASE-2023521
Isolating higher yielding and more stable rice genotypes in stress environments: fine-tuning a selection method using production and resilience score indices
Arnauld THIRY(), William J. DAVIES, Ian C. DODD
Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire LA1 4YW, UK
 Download: PDF(2638 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Score index methods readily discriminate genotypes adapted to a target environment.

● New quantitative method evaluated productivity and resilience of rice genotypes.

● Method identified A genotypes (high productivity and resilience) of Fernandez (1992).

● Method identified genotypes better adapted to reduced soil water conditions.

● Method can enhance rice sustainability (high productivity, low water use).

In Asia, the rice crop sustains millions of people. However, growing demand for this crop needs to be met while simultaneously reducing its water consumption to cope with the effects of climate change. Lowland cropping systems are the most common and productive but have particularly high water requirements. High-yielding rice genotypes adapted to drier environments (such as rainfed or aerobic rice ecosystems) are needed to increase the water use efficiency of cropping. Identifying these genotypes requires fast and more accurate selection methods. It is hypothesized that applying a new quantitative selection method (the score index selection method), can usefully compare rice yield responses over different years and stress intensities to select genotypes more rapidly and efficiently. Applying the score index to previously published rice yield data for 39 genotypes grown in no-stress and two stress environments, identified three genotypes (ARB 8, IR55419-04 and ARB 7) with higher and stable yield under moderate to severe stress conditions. These genotypes are postulated to be better adapted to stress environment such as upland and aerobic environments. Importantly, the score index selection method offers improved precision than the conventional breeding selection method in identifying genotypes that are well-suited to a range of stress levels within the target environment.

Keywords Aerobic rice      breeding selection      drought resilience      production capacity index      resilience capacity index      stress score index      upland     
Corresponding Author(s): Arnauld THIRY   
Just Accepted Date: 28 September 2023   Online First Date: 06 November 2023    Issue Date: 08 March 2024
 Cite this article:   
Arnauld THIRY,William J. DAVIES,Ian C. DODD. Isolating higher yielding and more stable rice genotypes in stress environments: fine-tuning a selection method using production and resilience score indices[J]. Front. Agr. Sci. Eng. , 2024, 11(1): 169-185.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2023521
https://academic.hep.com.cn/fase/EN/Y2024/V11/I1/169
Index name Abbreviation Formula
Stress susceptibility index SSI[21] S SI=1 Y sY pS I
Stress intensity SI[21] S I=[1 Ys¯ Y p¯]
Mean productivity MP[27] M P= Y s+Y p2
Stress tolerance index TOL[27] T OL=Y pY s
Geometric mean productivity index GMP[28] G MP= Ys ×Y p
Stress tolerance index STI[28] S TI=Y p×Y s Yp¯2
Drought yield index DYI[26] D YI= Y pY S GY p¯G Ys¯
Yield potential score index YPSI[22] Y PSI=( (M Ps +ST Is)2 ( SS Is+T OL s)2)
Yield stress score index YSSI[22] Y SSI=S SIs+S TIs2
Tab.1  List of the different indices, formulae and references
Genotype ID Yp (t·ha?1) Yms (t·ha?1) YPSI YSSI STIs (PCI) MPs GMPs SSIs (RCI) TOLs
Annada 4.14 2.89 –3.0 8 7 6 8 9 10
ARB 2 4.33 2.98 –1.5 8.5 8 8 9 9 10
ARB 3 4.82 3 2 9 10 10 10 8 8
ARB 4 4.27 2.73 –2.0 7.5 7 6 7 8 9
ARB 5 4.19 2.9 –2.0 8.5 8 7 8 9 10
ARB 6 4.64 2.7 1 7.5 8 8 8 7 7
ARB 7 4.24 3 –2.5 9 8 7 9 10 10
ARB 8 4.47 3.35 0 10 10 10 10 10 10
Baranideep 4.61 2.87 0.5 8.5 9 8 9 8 8
CB 0-15-24 4.38 2.89 –1.5 8.5 8 7 8 9 9
CB 2-458 4.65 2.4 0.5 6 6 7 7 6 6
DGI 237 4.28 2.67 –1.5 7.5 7 6 7 8 8
DGI 307 4.91 2.88 3 8.5 10 10 10 7 7
DGI 75 5.13 2.76 4.5 8 10 10 10 6 5
DSL 104-1 4.9 2.95 2.5 9 10 10 10 8 7
DSU 4-7 4.52 2.47 –0.5 6 6 6 7 6 7
IR36 3.89 1.78 –4.0 3.5 2 1 2 5 6
IR55419-04 4.39 2.96 –1.0 8.5 8 8 9 9 9
IR64 4.97 2.16 2.5 5 6 7 7 4 4
IR66873-R-11-1 4.94 2.1 2.5 5 6 6 6 4 3
IR67469-R-1-1 4.29 1.3 –1.5 1.5 1 1 1 2 3
IR72667-16-1-B-B-3 4.38 2.79 –1.0 8 8 7 8 8 9
IR74371-3-1-1 4.78 2.64 1.5 7.5 8 8 8 7 6
IR74371-46-1-1 4.68 2.65 1 7.5 8 8 8 7 7
IR74371-54-1-1 4.63 2.96 1 8.5 9 9 9 8 8
IR74371-70-1-1 5.1 2.92 3.5 8.5 10 10 10 7 6
IR74371-78-1-1 4.94 2.92 3 8.5 10 10 10 7 7
Kallurundaikar 4.51 2.65 0 7 7 7 8 7 7
Khiradhan 5.08 2.33 3 6 7 8 8 5 4
MTU 1010 4.79 2.59 2 7 8 8 8 6 6
NDR 1098-6 4.09 2.82 –3.0 8 7 6 7 9 10
PM 1011 4.58 2.89 0.5 8.5 9 8 9 8 8
PMK 1 4.73 1.17 0.5 1 1 2 1 1 1
PMK 2 4.22 1.36 –1.5 1.5 1 1 1 2 3
Poornima 4 2.55 –4.0 6.5 5 4 6 8 9
R1027-2282-2-1 4.55 2.69 0.5 7.5 8 7 8 7 7
RF 5329 4.32 2.85 –1.5 8.5 8 7 8 9 9
RR 272-21 4.33 2.66 –1.5 7.5 7 6 7 8 8
Tripuradhan 4.55 2.88 0.5 8.5 9 8 9 8 8
Tab.2  List of the 39 advanced rice breeding lines showing the yield value under irrigated conditions (Yp) and moderate stress (Yms) (data from Raman et al.[26])
Genotype ID Yp (t·ha?1) Yss (t·ha?1) YPSI YSSI STIs (PCI) MPs GMPs SSIs (RCI) TOLs
Annada 4.14 1.66 –2 7.5 7 6 8 8 9
ARB 2 4.33 1.71 –0.5 8 8 7 8 8 8
ARB 3 4.82 1.83 1.5 8.5 9 9 10 8 7
ARB 4 4.27 1.86 1.5 8.5 8 7 9 9 9
ARB 5 4.19 1.89 –2 8.5 8 7 9 9 10
ARB 6 4.64 1.73 1 7.5 8 8 9 7 7
ARB 7 4.24 2.05 1.5 9.5 9 8 10 10 10
ARB 8 4.47 2.19 –0.5 10 10 9 10 10 10
Baranideep 4.61 1.66 1 7.5 8 8 8 7 7
CB 0-15-24 4.38 2.01 1.5 9.5 9 8 10 10 10
CB 2-458 4.65 1.4 1 5.5 6 7 7 5 6
DGI 237 4.28 1.29 –1 5 5 5 6 5 7
DGI 307 4.91 1.84 3.5 8.5 10 10 10 7 6
DGI 75 5.13 1.86 4 8.5 10 10 10 7 5
DSL 104-1 4.9 1.48 2.5 6 7 8 8 5 5
DSU 4-7 4.52 1.39 0 6 6 6 7 6 6
IR36 3.89 0.45 –2 1 1 1 1 1 5
IR55419-04 4.39 2.15 –0.5 10 10 9 10 10 10
IR64 4.97 1.02 3.5 4 5 7 6 3 2
IR66873-R-11-1 4.94 0.66 2.5 1.5 2 5 3 1 1
IR67469-R-1-1 4.29 0.88 –0.5 3 3 4 4 3 5
IR72667-16-1-B-B-3 4.38 1.82 –1 8.5 8 8 9 9 9
IR74371-3-1-1 4.78 1.71 2 7.5 8 9 9 7 6
IR74371-46-1-1 4.68 1.83 1.5 8.5 9 9 9 8 7
IR74371-54-1-1 4.63 1.84 1 8.5 9 9 9 8 8
IR74371-70-1-1 5.1 1.87 3.5 8.5 10 10 10 7 6
IR74371-78-1-1 4.94 1.75 2.5 8 9 9 9 7 6
Kallurundaikar 4.51 1.96 0 9 9 9 10 9 9
Khiradhan 5.08 0.76 3.5 2 3 6 4 1 1
MTU 1010 4.79 1.43 2.5 6 7 8 8 5 5
NDR 1098-6 4.09 1.39 –2 5.5 5 5 6 6 8
PM 1011 4.58 1.25 0.5 5 5 6 6 5 5
PMK 1 4.73 0.79 2 2.5 3 5 4 2 2
PMK 2 4.22 0.77 –1 2 2 3 3 2 5
Poornima 4 1.68 –3 8 7 6 8 9 10
R1027-2282-2-1 4.55 1.19 1 4.5 5 6 6 4 5
RF 5329 4.32 1.86 –1.5 8.5 8 7 9 9 9
RR 272-21 4.33 1.26 –0.5 5 5 5 6 5 6
Tripuradhan 4.55 2.03 0.5 9.5 10 9 10 9 9
Tab.3  List of the 39 advanced rice breeding lines showing the yield value under irrigated conditions (Yp) and severe stress (Yss) (data from Raman et al.[26])
Fig.1  Linear regression and the coefficient of determination of the yield potential scored index (YPSI) versus yield under no stress (a and b) and yield stress scored index (YSSI) versus yield under moderate (c) and severe (d) stress conditions. Calculation of YPSI and YSSI use yield data from rice advanced line published in Raman et al.[26]. (a) and (c) are based on yield data from irrigated and moderate stress, when (b) and (d) on yield data from irrigated and severe stress environment. Each symbol is an individual genotype, yellow dot: IR64; orange dot: MTU 1010.
Genotype ID Moderate stress
Yp (t·ha–1) Yms (t·ha–1) YPSI YSSI PCI RCI
DGI 307 4.91 2.88 3 8.5 10 7
DGI 75 5.13 2.76 4.5 8 10 6
DSL 104-1 4.9 2.95 2.5 9 10 8
IR74371-70-1-1 5.1 2.92 3.5 8.5 10 7
IR74371-78-1-1 4.94 2.92 3 8.5 10 7
MTU 1010 4.79 2.59 2 7 8 6
IR64 4.97 2.16 2.5 5 6 4
Genotype ID Severe stress
Yp (t·ha–1) Yss (t·ha–1) YPSI YSSI PCI RCI
DGI 307 4.91 1.84 3.5 8.5 10 7
DGI 75 5.13 1.86 4 8.5 10 7
DSL 104-1 4.9 1.48 2.5 6 7 5
IR74371-70-1-1 5.1 1.87 3.5 8.5 10 7
IR74371-78-1-1 4.94 1.75 2.5 8 9 7
MTU 1010 4.79 1.43 2.5 6 7 5
IR64 4.97 1.02 0 9.5 5 3
Tab.4  List of selected rice genotypes using YPSI and YSSI
Genotype ID Moderate stress
Yp (t·ha–1) Yms (t·ha–1) PCI RCI
ARB 2 4.33 2.98 8 9
ARB 3 4.82 3.00 10 8
ARB 5 4.19 2.90 8 9
ARB 7 4.24 3.00 8 10
ARB 8 4.47 3.35 10 10
Baranideep 4.61 2.87 9 8
CB 0-15-24 4.38 2.89 8 9
DSL 104-1 4.9 2.95 10 8
IR55419-04 4.39 2.96 8 9
IR72667-16-1-B-B-3 4.38 2.79 8 8
IR74371-54-1-1 4.63 2.96 9 8
PM 1011 4.58 2.89 9 8
RF 5329 4.32 2.85 8 9
Tripuradhan 4.55 2.88 9 8
IR64 4.97 2.16 6 4
MTU 1010 4.79 2.59 8 6
Genotype ID Severe stress
Yp (t·ha–1) Yss (t·ha–1) PCI RCI
ARB 2 4.33 1.71 8 8
ARB 3 4.82 1.83 9 8
ARB 4 4.27 1.86 8 9
ARB 5 4.19 1.89 8 9
ARB 7 4.24 2.05 9 10
ARB 8 4.47 2.19 10 10
CB 0-15-24 4.38 2.01 9 10
IR55419-04 4.39 2.15 10 10
IR72667-16-1-B-B-3 4.38 1.82 8 9
IR74371-46-1-1 4.68 1.83 9 8
IR74371-54-1-1 4.63 1.84 9 8
Kallurundaikar 4.51 1.96 9 9
RF 5329 4.32 1.86 8 9
Tripuradhan 4.55 2.03 10 9
IR64 4.97 1.02 5 3
MTU 1010 4.79 1.43 7 5
Tab.5  List of the genotypes with a response superior to 80% of the population in moderate and severe stress environments in terms of production capacity index (PCI) and resilience capacity index (RCI)
Fig.2  Yield linear model of the reference cultivars (IR65, MTU 1010) and the six highlighted genotypes (IR74371-70-1-1, DGI 75, DGI 307, ARB 8, IR55419-04 and ARB 7) versus stress intensity.
Fig.3  Diagram of genotype distribution into four genotype classes (A, B, C and D)[28] (a) as a function of yield under no stress (Yp) and stress (Ys) (b) as a function of the productivity capacity index (PCI) and the resilient capacity index (RCI). Modified from Thiry et al.[22] under Creative Commons.
Genotype ID MYI Ranking Moderate stress Severe stress Deviation from IR64 mean Deviation from MTU 1010 mean
DYI Ranking DYI Ranking Control Moderate Severe Control Moderate Severe
Annada 2.90 25 1.43 3 2.49 12 –0.83 0.73 0.64 –0.66 0.3 0.23
ARB 2 3.01 19 1.45 5 2.53 14 –0.64 0.83 0.69 –0.47 0.4 0.28
ARB 3 3.22 4 1.61 18 2.63 16 –0.15 0.84 0.8 0.02 0.41 0.4
ARB 4 2.95 22 1.57 11 2.3 7 –0.7 0.57 0.83 –0.52 0.14 0.43
ARB 5 2.99 21 1.44 4 2.22 5 –0.78 0.75 0.86 –0.61 0.32 0.46
ARB 6 3.02 17 1.72 25 2.69 18 –0.33 0.55 0.7 –0.16 0.12 0.3
ARB 7 3.10 11 1.41 2 2.07 3 –0.73 0.85 1.02 –0.56 0.42 0.62
ARB 8 3.34 1 1.33 1 2.05 1 –0.49 1.2 1.16 –0.32 0.77 0.76
Baranideep 3.05 14 1.6 16 2.78 21 –0.36 0.72 0.64 –0.18 0.29 0.23
CB 0-15-24 3.09 12 1.51 8 2.18 4 –0.59 0.74 0.99 –0.42 0.31 0.58
CB 2-458 2.82 26 1.94 32 3.32 27 –0.31 0.24 0.38 –0.14 –0.19 –0.03
DGI 237 2.75 31 1.6 17 3.33 28 –0.69 0.51 0.26 –0.51 0.08 –0.14
DGI 307 3.21 5 1.71 24 2.67 17 –0.06 0.72 0.81 0.12 0.29 0.41
DGI 75 3.25 3 1.86 31 2.76 20 0.16 0.61 0.84 0.34 0.18 0.43
DSL 104-1 3.11 10 1.66 20 3.31 26 –0.07 0.79 0.46 0.1 0.36 0.05
DSU 4-7 2.79 28 1.83 29 3.26 25 –0.45 0.31 0.36 –0.27 –0.12 –0.04
IR36 2.04 39 2.18 33 8.63 39 –1.08 −0.37 –0.57 –0.91 –0.81 –0.98
IR55419-04 3.17 7 1.49 7 2.05 2 –0.58 0.8 1.12 –0.4 0.37 0.72
IR64 2.72 34 2.31 35 4.85 33 0 0 0 0.17 –0.43 –0.4
IR66873-R-11-1 2.57 35 2.35 36 7.47 38 –0.03 –0.05 –0.36 0.14 –0.48 –0.77
IR67469-R-1-1 2.16 37 3.29 38 4.86 34 –0.68 –0.85 –0.14 –0.51 –1.28 –0.55
IR72667-16-1-B-B-3 3.00 20 1.57 12 2.4 11 –0.59 0.64 0.8 –0.41 0.2 0.39
IR74371-3-1-1 3.04 15 1.81 28 2.79 22 –0.19 0.48 0.69 –0.02 0.05 0.29
IR74371-46-1-1 3.05 13 1.77 27 2.55 15 –0.29 0.49 0.81 –0.12 0.06 0.41
IR74371-54-1-1 3.14 9 1.56 10 2.52 13 –0.34 0.81 0.81 –0.16 0.38 0.41
IR74371-70-1-1 3.30 2 1.75 26 2.72 19 0.13 0.77 0.85 0.31 0.34 0.44
IR74371-78-1-1 3.20 6 1.69 21 2.83 23 –0.03 0.76 0.72 0.14 0.33 0.32
Kallurundaikar 3.04 16 1.7 23 2.3 8 –0.46 0.5 0.94 –0.28 0.07 0.53
Khiradhan 2.72 33 2.18 34 6.65 37 0.12 0.18 –0.26 0.29 –0.25 –0.66
MTU 1010 2.94 23 1.85 30 3.36 29 –0.17 0.43 0.4 0 0 0
NDR 1098-6 2.77 29 1.45 6 2.95 24 –0.88 0.66 0.36 –0.7 0.23 –0.04
PM 1011 2.91 24 1.59 15 3.65 31 –0.39 0.73 0.23 –0.22 0.3 –0.17
PMK 1 2.23 36 4.04 39 5.96 36 –0.24 –0.98 –0.23 –0.06 –1.42 –0.63
PMK 2 2.12 38 3.09 37 5.45 35 –0.75 –0.79 –0.25 –0.58 –1.22 –0.65
Poornima 2.74 32 1.57 13 2.39 10 –0.97 0.39 0.65 –0.79 –0.04 0.25
R1027-2282-2-1 2.81 27 1.69 22 3.83 32 –0.42 0.53 0.16 –0.24 0.1 –0.24
RF 5329 3.01 18 1.52 9 2.33 9 –0.64 0.69 0.83 –0.47 0.26 0.43
RR 272-21 2.75 30 1.63 19 3.43 30 –0.64 0.5 0.24 –0.47 0.07 –0.17
Tripuradhan 3.15 8 1.58 14 2.24 6 –0.42 0.73 1.01 –0.24 0.3 0.61
Tab.6  Summary of the indices used by Raman et al.[26] and their respective ranking value
Fig.4  Summary of the genotype selection as a function of each method presented and discussed in this paper.
1 N K, Fukagawa L H Ziska . Rice: importance for global nutrition. Journal of Nutritional Science and Vitaminology, 2019, 65(Supplement): S2–S3
https://doi.org/10.3177/jnsv.65.S2
2 P, Deveshwar A, Prusty S, Sharma A K Tyagi . Phytohormone-mediated molecular mechanisms involving multiple genes and QTL govern grain number in rice. Frontiers in Genetics, 2020, 11: 586462
https://doi.org/10.3389/fgene.2020.586462
3 Big Atlas . World rice production by country. Atlas Big. Available at Atlas Big website on August 15, 2022
4 Y, Kato K Katsura . Rice adaptation to aerobic soils: physiological considerations and implications for agronomy. Plant Production Science, 2014, 17(1): 1–12
https://doi.org/10.1626/pps.17.1
5 L, Gao Q, Gao M Lorenc . Comparison of total factor productivity of rice in China and Japan. Sustainability, 2022, 14(12): 7407
https://doi.org/10.3390/su14127407
6 M, Becker C Angulo . The evolution of lowland rice-based production systems in Asia: historic trends, determinants of change, future perspective. Advances in Agronomy, 2019, 157: 293–327
https://doi.org/10.1016/bs.agron.2019.04.003
7 A, Khanna M, Anumalla M, Catolos J, Bartholomé R, Fritsche-Neto J D, Platten D J, Pisano A, Gulles Cruz M T, Sta J, Ramos G, Faustino S, Bhosale W Hussain . Genetic trends estimation in IRRIs rice drought breeding program and identification of high yielding drought-tolerant lines. Rice, 2022, 15(1): 14
https://doi.org/10.1186/s12284-022-00559-3
8 M H, Dar D A, Bano S A, Waza N W, Zaidi A, Majid A B, Shikari M A, Ahangar M, Hossain A, Kumar U S Singh . Abiotic stress tolerance-progress and pathways of sustainable rice production. Sustainability, 2021, 13(4): 2078
https://doi.org/10.3390/su13042078
9 K, Kornhuber C, Lesk C F, Schleussner J, Jägermeyr P, Pfleiderer R M Horton . Risks of synchronized low yields are underestimated in climate and crop model projections. Nature Communications, 2023, 14(1): 3528
https://doi.org/10.1038/s41467-023-38906-7
10 K, Jana R, Karmakar S, Banerjee M, Sana S, Goswami A M Puste . Aerobic rice cultivation system: eco-friendly and water saving technology under changed climate. Agricultural Research & Technology, 2018, 13(2): 555878
11 H, Xia Z, Luo J, Xiong X, Ma Q, Lou H, Wei J, Qiu H, Yang G, Liu L, Fan L, Chen L Luo . Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity. Molecular Plant, 2019, 12(2): 170–184
https://doi.org/10.1016/j.molp.2018.12.011
12 K, Saito H, Asai D, Zhao A G, Laborte C Grenier . Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Production Science, 2018, 21(3): 145–158
https://doi.org/10.1080/1343943X.2018.1459751
13 R C, Bautista P A Counce . An overview of rice and rice quality. Cereal Foods World, 2020, 65(5): 52
14 N, Subedi S Poudel . Alternate wetting and drying technique and its impacts on rice production. Tropical Agrobiodiversity, 2021, 2(1): 1–6
15 M, Esmaeilzadeh-Moridani M, Esfahani A, Aalami A, Moumeni M Khaledian . Profiling the physiological response of upland and lowland rice (Oryza sativa L.) genotypes to water deficit. Journal of Crop Science and Biotechnology, 2022, 25(3): 289–300
https://doi.org/10.1007/s12892-021-00131-3
16 B, Lal A K, Nayak P, Gautam R, Tripathi T, Singh J L Katara . Aerobic rice: a water saving approach for rice production. Popular Kheti, 2013, 1(2): 1–4
17 P, Vijayaraghavareddy X, Yin P C, Struik U, Makarla S Sreeman . Responses of lowland, upland and aerobic rice genotypes to water limitation during different phases. Rice Science, 2020, 27(4): 345–354
https://doi.org/10.1016/j.rsci.2020.05.009
18 M, Sabar G, Shabir S M, Shah K, Aslam S A, Naveed M Arif . Identification and mapping of QTLs associated with drought tolerance traits in rice by a cross between super Basmati and IR55419–04. Breeding Science, 2019, 69(1): 169–178
https://doi.org/10.1270/jsbbs.18068
19 H, Xia J, Xiong T, Tao X, Zheng W, Huang J J, Li L, Chen L Luo . Distinguishing upland and lowland rice ecotypes by selective SSRs and their applications in molecular-assisted selection of rice drought resistance. Euphytica, 2015, 206(1): 11–20
https://doi.org/10.1007/s10681-015-1446-8
20 N, Tsenov T, Gubatov G, Raykov A, Ivanova P Chamurliiski . New approaches for evaluation the grain yield of winter wheat. International Journal of Current Research, 2017, 9(1): 44487–44495
21 R A, Fischer R Maurer . Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 1978, 29(5): 897–912
https://doi.org/10.1071/AR9780897
22 A A, Thiry Dulanto P N, Chavez M P, Reynolds W J Davies . How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. Journal of Experimental Botany, 2016, 67(19): 5593–5603
https://doi.org/10.1093/jxb/erw330
23 P, Ramirez-Vallejo J D Kelly . Traits related to drought resistance in common bean. Euphytica, 1998, 99(2): 127–136
https://doi.org/10.1023/A:1018353200015
24 Z, Khodarahmpour R, Choukan M R, Bihamta E M Hervan . Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. Journal of Agricultural Science and Technology, 2011, 13(1): 111–121
25 T, Parthasarathi K, Vanitha P, Lakshamanakumar D Kalaiyarasi . Aerobic rice-mitigating water stress for the future climate change. International Journal of Agronomy and Plant Production, 2012, 3(7): 241–254
26 A, Raman S, Verulkar N, Mandal M, Variar V, Shukla J, Dwivedi B, Singh O, Singh P, Swain A, Mall S, Robin R, Chandrababu A, Jain T, Ram S, Hittalmani S, Haefele H P, Piepho A Kumar . Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 2012, 5(1): 31
https://doi.org/10.1186/1939-8433-5-31
27 A A, Rosielle J Hamblin . Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 1981, 21(6): 943–946
https://doi.org/10.2135/cropsci1981.0011183X002100060033x
28 G C J Fernandez . Effective selection criteria for assessing plant stress tolerance. In: Kou C G, ed. Adaptation of Food Crops to Temperature and Water Stress. Tainan, China: Shanhua, Taiwan AVRDC, 1992, 257–270
29 S B, Verulkar N P, Mandal J L, Dwivedi B N, Singh P K, Sinha R N, Mahato P, Dongre O N, Singh L K, Bose P, Swain S, Robin R, Chandrababu S, Senthil A, Jain H E, Shashidhar S, Hittalmani Cruz C, Vera T, Paris A, Raman S, Haefele R, Serraj G, Atlin A Kumar . Breeding resilient and productive genotypes adapted to drought-prone rainfed ecosystem of India. Field Crops Research, 2010, 117(2–3): 197–208
https://doi.org/10.1016/j.fcr.2010.03.005
30 Core Team R . R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2021. Available at R-project website on August 15, 2022
31 A Blum . Yield potential and drought resistance: are they mutually exclusive? In: Reynolds M P, Rajaram S, McNab A, eds. Increasing Yield Potential in Wheat: Breaking the Barriers. Mexico: CIMMYT, 1996, 90–100
32 Z, Fatima M, Ahmed M, Hussain G, Abbas S, Ul-Allah S, Ahmad N, Ahmed M A, Ali G, Sarwar E U, Haque P, Iqbal S Hussain . The fingerprints of climate warming on cereal crops phenology and adaptation options. Scientific Reports, 2020, 10(1): 18013
https://doi.org/10.1038/s41598-020-74740-3
33 S, Khatoon S A, Majid A, Bibi G, Javed U Anila . Yield stability evaluation of wheat (Triticum aestivum L.) cultivated on different environments of district Poonch (AJK) Pakistan based upon water-related parameters. International Journal of Agronomy and Agricultural Research, 2016, 8(4): 11−21
34 M, Reckling H, Ahrends T W, Chen W, Eugster S, Hadasch S, Knapp F, Laidig A, Linstädter J, Macholdt H P, Piepho K, Schiffers T F Döring . Methods of yield stability analysis in long-term field experiments. A review. Agronomy for Sustainable Development, 2021, 41(2): 27
https://doi.org/10.1007/s13593-021-00681-4
35 S, Dixit A, Singh N, Sandhu A, Bhandari P, Vikram A Kumar . Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Molecular Breeding, 2017, 37(12): 143
https://doi.org/10.1007/s11032-017-0737-2
36 S, Dixit A, Singh Cruz M T, Sta P T, Maturan M, Amante A Kumar . Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. BMC Genetics, 2014, 15(1): 16
https://doi.org/10.1186/1471-2156-15-16
37 S, Utharasu C R Anandakumar . Heterosis and combining ability analysis for grain yield and its component traits in aerobic rice (Oryza sativa L.) cultivars. Electronic Journal of Plant Breeding, 2013, 4(4): 1271–1279
38 P, Swain A, Raman S P, Singh A Kumar . Breeding drought tolerant rice for shallow rainfed ecosystem of eastern India. Field Crops Research, 2017, 209: 168–178
https://doi.org/10.1016/j.fcr.2017.05.007
39 J, Shen Q, Zhu X, Jiao H, Ying H, Wang X, Wen W, Xu T, Li W, Cong X, Liu Y, Hou Z, Cui O, Oenema W J, Davies F Zhang . Agriculture Green Development: a model for China and the world. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 5–13
https://doi.org/10.15302/J-FASE-2019300
40 Y, Zhu Z, Wang X Zhu . New reflections on food security and land use strategies based on the evolution of Chinese dietary patterns. Land Use Policy, 2023, 126: 106520
https://doi.org/10.1016/j.landusepol.2022.106520
[1] FASE-23521-OF-TA_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed