|
|
A complete genome for a commercial duck |
Jim KAUFMAN1,2( ) |
1. Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK 2. Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK |
|
|
|
Corresponding Author(s):
Jim KAUFMAN
|
Just Accepted Date: 28 March 2024
Online First Date: 10 April 2024
Issue Date: 13 June 2024
|
|
1 |
S M, Wolf R C Green . Return of results in genomic research using large-scale or whole genome sequencing: toward a new normal. Annual Review of Genomics and Human Genetics, 2023, 24(1): 393–414
https://doi.org/10.1146/annurev-genom-101122-103209
|
2 |
J, Damas M, Corbo H A Lewin . Vertebrate chromosome evolution. Annual Review of Animal Biosciences, 2021, 9(1): 1–27
https://doi.org/10.1146/annurev-animal-020518-114924
|
3 |
Y, Deng A, Finck R Fan . Single-cell omics analyses enabled by microchip technologies. Annual Review of Biomedical Engineering, 2019, 21(1): 365–393
https://doi.org/10.1146/annurev-bioeng-060418-052538
|
4 |
H P Fischer . Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnology Annual Review, 2005, 11: 1–68
https://doi.org/10.1016/S1387-2656(05)11001-1
|
5 |
C E, Nelson C A Gersbach . Engineering delivery vehicles for genome editing. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 637–662
https://doi.org/10.1146/annurev-chembioeng-080615-034711
|
6 |
L, Holtzman C A Gersbach . Editing the epigenome: reshaping the genomic landscape. Annual Review of Genomics and Human Genetics, 2018, 19(1): 43–71
https://doi.org/10.1146/annurev-genom-083117-021632
|
7 |
D P, Berry M L Spangler . Animal board invited review: practical applications of genomic information in livestock. Animal, 2023, 17(11): 100996
https://doi.org/10.1016/j.animal.2023.100996
|
8 |
M E, Goddard B J Hayes . Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews. Genetics, 2009, 10(6): 381–391
https://doi.org/10.1038/nrg2575
|
9 |
R, Bekele M, Taye G, Abebe S Meseret . Genomic regions and candidate genes associated with milk production traits in holstein and its crossbred cattle: a review. International Journal of Genomics, 2023, 2023: 8497453
https://doi.org/10.1155/2023/8497453
|
10 |
S G, Narayana Jong E, de F S, Schenkel P A S, Fonseca T C S, Chud D, Powell G, Wachoski-Dark P E, Ronksley F, Miglior K, Orsel H W Barkema . Underlying genetic architecture of resistance to mastitis in dairy cattle: a systematic review and gene prioritization analysis of genome-wide association studies. Journal of Dairy Science, 2023, 106(1): 323–351
https://doi.org/10.3168/jds.2022-21923
|
11 |
J, Smith J M, Alfieri N, Anthony P, Arensburger G N, Athrey J, Balacco A, Balic P, Bardou P, Barela Y, Bigot H, Blackmon P M, Borodin R, Carroll M C, Casono M, Charles H, Cheng M, Chiodi L, Cigan L M, Coghill R, Crooijmans N, Das S, Davey A, Davidian F, Degalez J M, Dekkers M, Derks A B, Diack A, Djikeng Y, Drechsler A, Dyomin O, Fedrigo S R, Fiddaman G, Formenti L A F, Frantz J E, Fulton E, Gaginskaya S, Galkina R A, Gallardo J, Geibel A A, Gheyas C J P, Godinez A, Goodell J A M, Graves D K, Griffin B, Haase J L, Han O, Hanotte L J, Henderson Z C, Hou K, Howe L, Huynh E, Ilatsia E D, Jarvis S M, Johnson J, Kaufman T, Kelly S, Kemp C, Kern J H, Keroack C, Klopp S, Lagarrigue S J, Lamont M, Lange A, Lanke D M, Larkin G, Larson J K N, Layos O, Lebrasseur L P, Malinovskaya R J, Martin Cerezo M L, Martin A S, Mason F M, McCarthy M J, McGrew J, Mountcastle C K, Muhonja W, Muir K, Muret T D, Murphy I, Ng’ang’a M, Nishibori R E, O’Connor M, Ogugo R, Okimoto O, Ouko H R, Patel F, Perini M I, Pigozzi K C, Potter P D, Price C, Reimer E S, Rice N, Rocos T F, Rogers P, Saelao J, Schauer R D, Schnabel V A, Schneider H, Simianer A, Smith M P, Stevens K, Stiers C K, Tiambo M, Tixier-Boichard A A, Torgasheva A, Tracey C A, Tregaskes L, Vervelde Y, Wang W C, Warren P D, Waters D, Webb S, Weigend A, Wolc A E, Wright D, Wright Z, Wu M, Yamagata C, Yang Z T, Yin M C, Young G, Zhang B, Zhao H Zhou . Fourth report on chicken genes and chromosomes. Cytogenetic and Genome Research, 2022, 162(8–9): 405–528
https://doi.org/10.1159/000529376
|
12 |
G G D, Suminda M, Ghosh Y O Son . The innovative informatics approaches of high-throughput technologies in livestock: spearheading the sustainability and resiliency of agrigenomics research. Life, 2022, 12(11): 1893
https://doi.org/10.3390/life12111893
|
13 |
T, Dehau R, Ducatelle Immerseel F, van E Goossens . Omics technologies in poultry health and productivity—Part 1: current use in poultry research. Avian Pathology, 2022, 51(5): 407–417
https://doi.org/10.1080/03079457.2022.2086447
|
14 |
B, Rieblinger H, Sid D, Duda T, Bozoglu R, Klinger A, Schlickenrieder K, Lengyel K, Flisikowski T, Flisikowska N, Simm A, Grodziecki C, Perleberg A, Bähr L, Carrier M, Kurome V, Zakhartchenko B, Kessler E, Wolf L, Kettler H, Luksch I T, Hagag D, Wise J, Kaufman B B, Kaufer C, Kupatt A, Schnieke B Schusser . Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2022562118
https://doi.org/10.1073/pnas.2022562118
|
15 |
J K, Kim N J, Negovetich H L, Forrest R G Webster . Ducks: the “Trojan horses” of H5N1 influenza. Influenza and Other Respiratory Viruses, 2009, 3(4): 121–128
https://doi.org/10.1111/j.1750-2659.2009.00084.x
|
16 |
R, Chmielewski D E Swayne . Avian influenza: public health and food safety concerns. Annual Review of Food Science and Technology, 2011, 2(1): 37–57
https://doi.org/10.1146/annurev-food-022510-133710
|
17 |
A, Funk M, Mhamdi H, Will H Sirma . Avian hepatitis B viruses: molecular and cellular biology, phylogenesis, and host tropism. World Journal of Gastroenterology, 2007, 13(1): 91–103
https://doi.org/10.3748/wjg.v13.i1.91
|
18 |
K, Dhama N, Kumar M, Saminathan R, Tiwari K, Karthik M A, Kumar M, Palanivelu M Z, Shabbir Y S, Malik R K Singh . Duck virus enteritis (duck plague)—A comprehensive update. Veterinary Quarterly, 2017, 37(1): 57–80
https://doi.org/10.1080/01652176.2017.1298885
|
19 |
Y, Cui Y, Pan J, Guo D, Wang X, Tong Y, Wang J, Li J, Zhao Y, Ji Z, Wu P, Zeng J, Zhou X, Feng L, Hou J Liu . The evolution, genomic epidemiology, and transmission dynamics of Tembusu virus. Viruses, 2022, 14(6): 1236
https://doi.org/10.3390/v14061236
|
20 |
S, Jafari M, Ebrahimi T Luangtongkum . The worldwide trend of Campylobacter spp., infection from duck-related isolates and associated phenotypic and genotypic antibiotic resistance, since 1985: identifying opportunities and challenges for prevention and control. Poultry Science, 2021, 100(8): 101213
https://doi.org/10.1016/j.psj.2021.101213
|
21 |
Q, Cai Y, Li Y F, Chang Z, Tang H, Zhang Q Xie . Pasteurella multocida causes liver injury in ducks by mediating inflammatory, apoptotic and autophagic pathways. Microbial Pathogenesis, 2023, 184: 106336
https://doi.org/10.1016/j.micpath.2023.106336
|
22 |
J, Hu L, Song M, Ning X, Niu M, Han C, Gao X, Feng H, Cai T, Li F, Li H, Li D, Gong W, Song L, Liu J, Pu J, Liu J, Smith H, Sun Y Huang . A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. BMC Biology, 2024, 22(1): 31
https://doi.org/10.1186/s12915-024-01817-0
|
23 |
J, Trowsdale J C Knight . Major histocompatibility complex genomics and human disease. Annual Review of Genomics and Human Genetics, 2013, 14(1): 301–323
https://doi.org/10.1146/annurev-genom-091212-153455
|
24 |
J Kaufman . Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annual Review of Immunology, 2018, 36(1): 383–409
https://doi.org/10.1146/annurev-immunol-051116-052450
|
25 |
J Kaufman . Generalists and specialists: a new view of how MHC class I molecules fight infectious pathogens. Trends in Immunology, 2018, 39(5): 367–379
https://doi.org/10.1016/j.it.2018.01.001
|
26 |
K, He C H, Liang Y, Zhu P, Dunn A, Zhao P Minias . Reconstructing macroevolutionary patterns in avian MHC architecture with genomic data. Frontiers in Genetics, 2022, 13: 823686
https://doi.org/10.3389/fgene.2022.823686
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|