|
|
A temporal framework for building up of healthy soils |
Junling ZHANG1( ), Jiangzhou ZHANG2, Yunlong ZHANG3, Guangzhou WANG1 |
1. State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China 2. Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources; College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China 3. Key Laboratory of Grassland Management and Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China |
|
|
|
Corresponding Author(s):
Junling ZHANG
|
Just Accepted Date: 08 May 2024
Online First Date: 27 May 2024
Issue Date: 13 June 2024
|
|
1 |
ecosystem assessment (MEA) Millennium . Current State & Trends Assessment. Washington, DC: Island Press, 2005
|
2 |
J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang . Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
https://doi.org/10.1126/science.1182570
|
3 |
X J, Liu W, Xu L, Duan E Z, Du Y P, Pan X K, Lu L, Zhang Z Y, Wu X M, Wang Y, Zhang J L, Shen L, Song Z Z, Feng X Y, Liu W, Song A H, Tang Y Y, Zhang X Y, Zhang J L Jr Collett . Atmospheric nitrogen emission, deposition, and air quality impacts in China: an overview. Current Pollution Reports, 2017, 3(2): 65–77
https://doi.org/10.1007/s40726-017-0053-9
|
4 |
J W, Doran M R Zeiss . Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 2000, 15(1): 3–11
https://doi.org/10.1016/S0929-1393(00)00067-6
|
5 |
J, Lehmann D A, Bossio I, Kögel-Knabner M C Rillig . The concept and future prospects of soil health. Nature Reviews. Earth & Environment, 2020, 1(10): 544–553
https://doi.org/10.1038/s43017-020-0080-8
|
6 |
C E, Pankhurst B M, Doube V V S R Gupta . Biological indicators of soil health: synthesis. In: Pankhurst C E, Doube B M, Gupta V V S R, eds. Biological Indicators of Soil Health. Wallingford, Oxon: CAB International, 1997, 419–435
|
7 |
J Z, Zhang Y Z, Li J Y, Jia W Q, Liao J P, Amsili R L, Schneider Es H M, van Y, Li J L Zhang . Applicability of soil health assessment for wheat-maize cropping systems in smallholders’ farmlands. Agriculture, Ecosystems & Environment, 2023, 353: 108558
https://doi.org/10.1016/j.agee.2023.108558
|
8 |
Graaff M A, de N, Hornslein H L, Throop P, Kardol Diepen L T A van . Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Advances in Agronomy, 2019, 155: 1–44
https://doi.org/10.1016/bs.agron.2019.01.001
|
9 |
T, Yang N, Lupwayi S A, Marc K H, Siddique L D Bainard . Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Global Ecology and Conservation, 2021, 27: e01521
https://doi.org/10.1016/j.gecco.2021.e01521
|
10 |
Bruggen A H C, van A M Semenov . In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 2000, 15(1): 13–24
https://doi.org/10.1016/S0929-1393(00)00068-8
|
11 |
M, Hartmann J Six . Soil structure and microbiome functions in agroecosystems. Nature Reviews. Earth & Environment, 2023, 4(1): 4–18
https://doi.org/10.1038/s43017-022-00366-w
|
12 |
der Heijden M G A, van C Wagg . Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 2013, 363(1−2): 1–5
https://doi.org/10.1007/s11104-012-1545-4
|
13 |
C, Xiong Y Lu . Microbiomes in agroecosystem: diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14(6): 833–849
https://doi.org/10.1111/1758-2229.13126
|
14 |
F, Romero M, Labouyrie A, Orgiazzi C, Ballabio P, Panagos A, Jones L, Tedersoo M, Bahram C A, Guerra N, Eisenhauer D, Tao M, Delgado-Baquerizo P, García-Palacios der Heijden M G A van . Soil health is linked to primary productivity across Europe. bioRxiv, 2023: 564603
|
15 |
M, Toda F, Walder der Heijden M G A van . Organic management and soil health promote nutrient use efficiency. Journal of Sustainable Agriculture and Environment, 2023, 2(3): 215–224
https://doi.org/10.1002/sae2.12058
|
16 |
L, Brussaard T W, Kuyper W A M, Didden Goede R G M, de J Bloem . Biological soil quality from biomass to biodiversity - importance and resilience to management stress and disturbance. In: Schjønning P, Emholt S, Christensen B T, eds. Managing Soil Quality-Challenges in Modern Agriculture. Wallingford, UK: CAB International, 2004, 139–161
|
17 |
R A, Wittwer S F, Bender K, Hartman S, Hydbom R A A, Lima V, Loaiza T, Nemecek F, Oehl P A, Olsson O, Petchey U E, Prechsl K, Schlaeppi T, Scholten S, Seitz J, Six der Heijden M G A van . Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7(34): eabg6995
https://doi.org/10.1126/sciadv.abg6995
|
18 |
G, Tamburini R, Bommarco T C, Wanger C, Kremen der Heijden M G A, van M, Liebman S Hallin . Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 2020, 6(45): eaba1715
|
19 |
J L, Zhang der Heijden M G A, van F S, Zhang S F Bender . Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 236–242
https://doi.org/10.15302/J-FASE-2020336
|
20 |
D P, Rasse C, Rumpel M F Dignac . Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil, 2005, 269(1−2): 341–356
https://doi.org/10.1007/s11104-004-0907-y
|
21 |
I Kögel-Knabner . The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biology & Biochemistry, 2017, 105: A3–A8
https://doi.org/10.1016/j.soilbio.2016.08.011
|
22 |
T, Camenzind K, Mason-Jones I, Mansour M C, Rillig J Lehmann . Formation of necromass derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 2023, 16(2): 115–122
https://doi.org/10.1038/s41561-022-01100-3
|
23 |
C, Liang J P, Schimel J D Jastrow . The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2(8): 17105
https://doi.org/10.1038/nmicrobiol.2017.105
|
24 |
C, Liang W, Amelung J, Lehmann M Kästner . Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25(11): 3578–3590
https://doi.org/10.1111/gcb.14781
|
25 |
S, Jin B, Zhang B, Wu D, Han Y, Hu C, Ren C, Zhang X, Wei Y, Wu A P J, Mol S, Reis B, Gu J Chen . Decoupling livestock and crop production at the household level in China. Nature Sustainability, 2021, 4(1): 48–55
https://doi.org/10.1038/s41893-020-00596-0
|
26 |
A, Ghirardini V, Grillini P Verlicchi . A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure—Environmental risk due to antibiotics after application to soil. Science of the Total Environment, 2020, 707: 136118
https://doi.org/10.1016/j.scitotenv.2019.136118
|
27 |
C, Yu X, Huang H, Chen H C J, Godfray J S, Wright J W, Hall P, Gong S, Ni S, Qiao G, Huang Y, Xiao J, Zhang Z, Feng X, Ju P, Ciais N C, Stenseth D O, Hessen Z, Sun L, Yu W, Cai H, Fu X, Huang C, Zhang H, Liu J Taylor . Managing nitrogen to restore water quality in China. Nature, 2019, 567(7749): 516–520
https://doi.org/10.1038/s41586-019-1001-1
|
28 |
K, Cheng J, Zheng D, Nayak P, Smith G Pan . Re‐evaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in China’s cropland. Soil Use and Management, 2013, 29(4): 501–509
https://doi.org/10.1111/sum.12077
|
29 |
J, Sanderman T, Hengl G J Fiske . Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(36): 9575–9580
https://doi.org/10.1073/pnas.1706103114
|
30 |
C, Vazquez Goede R G M, de M, Rutgers Koeijer T J, de R E Creamer . Assessing multifunctionality of agricultural soils: reducing the biodiversity trade‐off. European Journal of Soil Science, 2021, 72(4): 1624–1639
https://doi.org/10.1111/ejss.13019
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|