|
|
Research fronts of agriculture in 2023 |
Jianxiang XU1( ), Yunzhou LI2( ), Jie ZHAO2, Liang SHI2, Yinkun YAO2, Jingyue TANG2 |
1. Science and Technology Journal Center, Higher Education Press, Beijing 100029, China 2. FASE Editorial Office of Institute for Science and Technology Development, China Agricultural University,Beijing 100193, China |
|
|
|
Corresponding Author(s):
Jianxiang XU,Yunzhou LI
|
Online First Date: 27 May 2024
Issue Date: 13 June 2024
|
|
1 |
of Science and Development, Institute Academy of Sciences (CASISD) Chinese . 2023 Research Fronts. Available at CASISD website on February 2, 2024
|
2 |
Engineering. 2023 Engineering Fronts. Available at Engineering Website on February 2, 2024
|
3 |
of Agricultural Science and Engineering (FASE) Frontiers . 2023 Engineering Fronts. FASE website, 2023.
|
4 |
“Research Fronts 2023: Active Fields, Leading Countries/ Regions”. Available at CASISD website on February 2, 2024
|
5 |
2022 Research Fronts. Available at Jinling Institute of Technology (JIT) Library website on April 1, 2024
|
6 |
2021 Research Fronts. Available at JIT Library website on April 1, 2024
|
7 |
2020 Research Fronts. Available at JIT Library website on April 1, 2024
|
8 |
2019 Research Fronts. Available at JIT Library website on April 1, 2024
|
9 |
H, Tettelin V, Masignani M J, Cieslewicz C, Donati D, Medini N L, Ward S V, Angiuoli J, Crabtree A L, Jones A S, Durkin R T, Deboy T M, Davidsen M, Mora M, Scarselli y Ros I, Margarit J D, Peterson C R, Hauser J P, Sundaram W C, Nelson R, Madupu L M, Brinkac R J, Dodson M J, Rosovitz S A, Sullivan S C, Daugherty D H, Haft J, Selengut M L, Gwinn L, Zhou N, Zafar H, Khouri D, Radune G, Dimitrov K, Watkins K J B, O’Connor S, Smith T R, Utterback O, White C E, Rubens G, Grandi L C, Madoff D L, Kasper J L, Telford M R, Wessels R, Rappuoli C M Fraser . Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 13950–13955
https://doi.org/10.1073/pnas.0506758102
|
10 |
J X, Xu Y Z, Li Y K, Yao J, Zhao J Y, Tang Z X Feng . Genome editing: a ground breaking research has been ranked top 10 engineering fronts from 2017 to 2021. Frontiers of Agricultural Science and Engineering, 2022, 9(2): 309–311
|
11 |
P E, Bayer A A, Golicz A, Scheben J, Batley D Edwards . Plant pan-genomes are the new reference. Nature Plants, 2020, 6(8): 914–920
https://doi.org/10.1038/s41477-020-0733-0
|
12 |
R, Li Y, Li H, Zheng R, Luo H, Zhu Q, Li W, Qian Y, Ren G, Tian J, Li G, Zhou X, Zhu H, Wu J, Qin X, Jin D, Li H, Cao X, Hu H, Blanche H, Cann X, Zhang S, Li L, Bolund K, Kristiansen H, Yang J, Wang J Wang . Building the sequence map of the human pan-genome. Nature Biotechnology, 2010, 28(1): 57–63
https://doi.org/10.1038/nbt.1596
|
13 |
L, Gao I, Gonda H, Sun Q, Ma K, Bao D M, Tieman E A, Burzynski-Chang T L, Fish K A, Stromberg G L, Sacks T W, Thannhauser M R, Foolad M J, Diez J, Blanca J, Canizares Y, Xu der Knaap E, van S, Huang H J, Klee J J, Giovannoni Z Fei . The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51(6): 1044–1051
https://doi.org/10.1038/s41588-019-0410-2
|
14 |
M, Alonge X, Wang M, Benoit S, Soyk L, Pereira L, Zhang H, Suresh S, Ramakrishnan F, Maumus D, Ciren Y, Levy T H, Harel G, Shalev-Schlosser Z, Amsellem H, Razifard A L, Caicedo D M, Tieman H, Klee M, Kirsche S, Aganezov T R, Ranallo-Benavidez Z H, Lemmon J, Kim G, Robitaille M, Kramer S, Goodwin W R, McCombie S, Hutton Eck J, Van J, Gillis Y, Eshed F J, Sedlazeck der Knaap E, van M C, Schatz Z B Lippman . Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145–161.e23
https://doi.org/10.1016/j.cell.2020.05.021
|
15 |
Y, Tao H, Luo J, Xu A, Cruickshank X, Zhao F, Teng A, Hathorn X, Wu Y, Liu T, Shatte D, Jordan H, Jing E Mace . Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 2021, 7(6): 766–773
https://doi.org/10.1038/s41477-021-00925-x
|
16 |
E, Garrison J, Sirén A M, Novak G, Hickey J M, Eizenga E T, Dawson W, Jones S, Garg C, Markello M F, Lin B, Paten R Durbin . Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnology, 2018, 36(9): 875–879
https://doi.org/10.1038/nbt.4227
|
17 |
A Ameur . Goodbye reference, hello genome graphs. Nature Biotechnology, 2019, 37(8): 866–868
https://doi.org/10.1038/s41587-019-0199-7
|
18 |
Y, Liu H, Du P, Li Y, Shen H, Peng S, Liu G A, Zhou H, Zhang Z, Liu M, Shi X, Huang Y, Li M, Zhang Z, Wang B, Zhu B, Han C, Liang Z Tian . Pan-genome of wild and cultivated soybeans. Cell, 2020, 182(1): 162–176.e13
https://doi.org/10.1016/j.cell.2020.05.023
|
19 |
H, Li S, Wang S, Chai Z, Yang Q, Zhang H, Xin Y, Xu S, Lin X, Chen Z, Yao Q, Yang Z, Fei S, Huang Z Zhang . Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 2022, 13(1): 682
https://doi.org/10.1038/s41467-022-28362-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|