Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 465-474    https://doi.org/10.15302/J-FASE-2022454
REVIEW
IMPROVING NITROGEN SAFETY IN CHINA: NITROGEN FLOWS, POLLUTION AND CONTROL
Chaopu TI1,2, Xiaoyuan YAN1,2(), Longlong XIA3, Jingwen HUANG1,2
1. State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82497, Germany
 Download: PDF(3439 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● It is necessary to address the N flows and their impacts on environment in China for sustainable N management.

● Barriers include better understanding of N cycle mechanisms and improving low cost abatement technologies are needed to overcome.

● Integrated measures and policies are crucial for the abatement of adverse impacts of N.

The impacts of nitrogen on environmental quality, greenhouse gas balances, ecosystem and biodiversity in China are of great concern given the magnitude of demand for food and energy. Comprehensive summaries of historic N flows and their critical threats and sustainable management are urgently needed. This paper initially reviews the historical trends of N flows in China and identifies the critical threats of N loss. Subsequently, it describes some recent success stories of N management, and finally indicates barriers to N pollution control. This review highlights three key points. Firstly, a steady increase of N input in China has led to a series of environmental problems via leaching and runoff, ammonia emissions and denitrification. Secondly, although great efforts to improve N management and N safety in China, further quantifications of N flows and analysis of their underlying mechanisms are needed to improve the understanding of the N cycle and pollution control. Finally, it proposes that the best available technologies combined with regulatory plans, laws, projects and policies should be implemented to overcome current barriers in N control and achieve a balance between the sustainable use of N resources and environmental conservation in China.

Keywords barriers      future management      ammonia emissions      nitrogen input      water N pollution     
Corresponding Author(s): Xiaoyuan YAN   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 23 June 2022   Online First Date: 28 July 2022    Issue Date: 09 September 2022
 Cite this article:   
Chaopu TI,Xiaoyuan YAN,Longlong XIA, et al. IMPROVING NITROGEN SAFETY IN CHINA: NITROGEN FLOWS, POLLUTION AND CONTROL[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 465-474.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022454
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/465
Fig.1  Agricultural fertilizer N use and NUE in China from 1980 to 2014.
Fig.2  The five key threats of excess reactive N. Sourced from Sutton et al.[30], with permission from Cambridge University Press.
Fig.3  Changes in grain yield, total aboveground N uptake and NUE by increasing the splitting frequency of fertilizer N application (a), reducing basal N fertilizer proportion (b), and deep placement of N fertilizer (c). Sourced from Xia et al.[48], with permission from John Wiley & Sons Ltd.
Fig.4  The policy in nitrogen governance from 1995 to 2015. Modified from Wu et al.[51], with permission from Elsevier.
Fig.5  Annual TN concentration changes in the Taihu Lake.
1 J N, Galloway A, Bleeker J W Erisman. The human creation and use of reactive nitrogen: a global and regional perspective. Annual Review of Environment and Resources , 2021, 46( 1): 255–288
https://doi.org/10.1146/annurev-environ-012420-045120
2 J N, Galloway A R, Townsend J W, Erisman M, Bekunda Z, Cai J R, Freney L A, Martinelli S P, Seitzinger M A Sutton. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science , 2008, 320( 5878): 889–892
https://doi.org/10.1126/science.1136674 pmid: 18487183
3 N, Gruber J N Galloway. An earth-system perspective of the global nitrogen cycle. Nature , 2008, 451( 7176): 293–296
https://doi.org/10.1038/nature06592 pmid: 18202647
4 B Z, Houlton M, Almaraz V, Aneja A T, Austin E, Bai K G, Cassman J E, Compton E A, Davidson J W, Erisman J N, Galloway B, Gu G, Yao L A, Martinelli K, Scow W H, Schlesinger T P, Tomich C, Wang X Zhang. A world of co-benefits: solving the global nitrogen challenge. Earth’s Future , 2019, 7( 8): 1–8
https://doi.org/10.1029/2019EF001222 pmid: 31501769
5 M A, Sutton O, Oenema J W, Erisman A, Leip Grinsven H, van W Winiwarter. Too much of a good thing. Nature , 2011, 472( 7342): 159–161
https://doi.org/10.1038/472159a pmid: 21478874
6 B, Gu X, Ju J, Chang Y, Ge P M Vitousek. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America , 2015, 112( 28): 8792–8797
https://doi.org/10.1073/pnas.1510211112 pmid: 26124118
7 S, Wang X, Zhang C, Wang X, Zhang S, Reis J, Xu B Gu. A high-resolution map of reactive nitrogen inputs to China. Scientific Data , 2020, 7( 1): 379
https://doi.org/10.1038/s41597-020-00718-5 pmid: 33177531
8 J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang. Significant acidification in major Chinese croplands. Science , 2010, 327( 5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
9 X, Liu Y, Zhang W, Han A, Tang J, Shen Z, Cui P, Vitousek J W, Erisman K, Goulding P, Christie A, Fangmeier F Zhang. Enhanced nitrogen deposition over China. Nature , 2013, 494( 7438): 459–462
https://doi.org/10.1038/nature11917 pmid: 23426264
10 X, Zhang Y, Zhang P, Shi Z, Bi Z, Shan L Ren. The deep challenge of nitrate pollution in river water of China. Science of the Total Environment , 2021, 770 : 144674
https://doi.org/10.1016/j.scitotenv.2020.144674 pmid: 33513508
11 Y H, Zhao L, Zhang Y F, Chen X J, Liu W, Xu Y P, Pan L Duan. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment , 2017, 153 : 32–40
https://doi.org/10.1016/j.atmosenv.2017.01.018
12 Y, Gao F, Zhou P, Ciais C, Miao T, Yang Y, Jia X, Zhou B B, Klaus T, Yang G Yu. Human activities aggravate nitrogen-deposition pollution to inland water over China. National Science Review , 2020, 7( 2): 430–440
https://doi.org/10.1093/nsr/nwz073 pmid: 34692058
13 C P, Ti J J, Pan Y Q, Xia X Y Yan. A nitrogen budget of mainland China with spatial and temporal variation. Biogeochemistry , 2012, 108( 1−3): 381–394
https://doi.org/10.1007/s10533-011-9606-y
14 C, Yu X, Huang H, Chen H C J, Godfray J S, Wright J W, Hall P, Gong S, Ni S, Qiao G, Huang Y, Xiao J, Zhang Z, Feng X, Ju P, Ciais N C, Stenseth D O, Hessen Z, Sun L, Yu W, Cai H, Fu X, Huang C, Zhang H, Liu J Taylor. Managing nitrogen to restore water quality in China. Nature , 2019, 567( 7749): 516–520
https://doi.org/10.1038/s41586-019-1001-1 pmid: 30818324
15 S X, Zhai D J, Jacob X, Wang Z R, Liu T X, Wen V, Shah K, Li J M, Moch K H, Bates S J, Song L, Shen Y Z, Zhang G, Luo F Q, Yu Y L, Sun L T, Wang M Y, Qi J, Tao K, Gui H H, Xu Q, Zhang T L, Zhao Y S, Wang H C, Lee H, Choi H Liao. Control of particulate nitrate air pollution in China. Nature Geoscience , 2021, 14( 6): 389–395
https://doi.org/10.1038/s41561-021-00726-z
16 C, Zhang X, Ju D, Powlson O, Oenema P Smith. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology , 2019, 53( 12): 6678–6687
https://doi.org/10.1021/acs.est.8b06383 pmid: 31125212
17 C P, Ti X Y Yan. Nitrogen regulation in China’s agricultural systems. In: Liu X, Du E, eds. Atmospheric Reactive Nitrogen in China. Singapore: Springer , 2020
18 D, Xie B, Zhao S, Wang L Duan. Benefit of China’s reduction in nitrogen oxides emission to natural ecosystems in East Asia with respect to critical load exceedance. Environment International , 2020, 136 : 105468
https://doi.org/10.1016/j.envint.2020.105468 pmid: 31935562
19 Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARA) The. Research report on fertilizer utilization efficiency of three major grain crops in China. Beijing: MARA . Available at MARA website on March 13, 2022
20 X, Zhang C, Ren B, Gu D Chen. Uncertainty of nitrogen budget in China. Environmental Pollution , 2021, 286 : 117216
https://doi.org/10.1016/j.envpol.2021.117216 pmid: 33965801
21 Food and Agriculture Organization of the United Nations (FAO), FAOSTAT, 2022. Available at FAO website on February 20, 2021
22 X F, Gu M, Huang Y D, Zhang H M, Yan J, Li R, Guo X L Zhong. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961–2010. Acta Ecologica Sinica , 2016, 36(12): 3591−3600 ( 3591)
23 G R, Yu Y L, Jia N P, He J X, Zhu Z, Chen Q F, Wang S L, Piao X J, Liu H L, He X B, Guo Z, Wen P, Li G A, Ding K Goulding. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience , 2019, 12( 6): 424–429
https://doi.org/10.1038/s41561-019-0352-4
24 Bureau of Statistics of China (NBSC) National. China Statistical Yearbook 2020. Beijing: China Statistics Press , 2011
25 X, Yan L, Xia C Ti. Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environmental Pollution , 2022, 293( 293): 118496
https://doi.org/10.1016/j.envpol.2021.118496 pmid: 34785288
26 D, Fowler M, Coyle U, Skiba M A, Sutton J N, Cape S, Reis L J, Sheppard A, Jenkins B, Grizzetti J N, Galloway P, Vitousek A, Leach A F, Bouwman K, Butterbach-Bahl F, Dentener D, Stevenson M, Amann M Voss. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences , 2013, 368( 1621): 20130164
https://doi.org/10.1098/rstb.2013.0164 pmid: 23713126
27 Z, Luo X, Liang S K, Lam A R, Mosier S, Hu D Chen. Hotspots of reactive nitrogen loss in China: production, consumption, spatiotemporal trend and reduction responsibility. Environmental Pollution , 2021, 284 : 117126
https://doi.org/10.1016/j.envpol.2021.117126 pmid: 33906036
28 S, Cui Y, Shi P M, Groffman W H, Schlesinger Y G Zhu. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proceedings of the National Academy of Sciences of the United States of America , 2013, 110( 6): 2052–2057
https://doi.org/10.1073/pnas.1221638110 pmid: 23341613
29 C C Delwiche. The nitrogen cycle. Scientific American , 1970, 223( 3): 137–146
https://doi.org/10.1038/scientificamerican0970-136 pmid: 5459723
30 M A, Sutton C M, Howard J W, Erisman W J, Bealy G, Billen A, Bleeker A F, Bouwman P, Grennfelt Grinsven H, van G Brunna. The challenge to integrate nitrogen science and policies: the European Nitrogen Assessment approach. In: Sutton M A, Howard C M, Erisman J W, Billen G, Bleeker A, eds. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. UK: Cambridge University Press , 2011, 82
31 X L, Dai P Q, Qian L, Ye T Song. Changes in nitrogen and phosphorus concentrations in Lake Taihu. Journal of Lake Sciences , 2016, 28(5): 935−943 ( in Chinese)
32 B, Qin G, Zhu G, Gao Y, Zhang W, Li H W, Paerl W W Carmichael. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental Management , 2010, 45( 1): 105–112
https://doi.org/10.1007/s00267-009-9393-6 pmid: 19915899
33 Basin Authority of Ministry of Water Resources (TBAMWR) Taihu. The health status report of Taihu Lake in 2018. TBAMWR , 2019, 1–14 ( in Chinese)
34 Y H, Yang F, Zhou H C, Guo H, Sheng H, Liu X, Dao C J He. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment , 2010, 170( 1−4): 407–416
https://doi.org/10.1007/s10661-009-1242-9 pmid: 19936953
35 B J, Gu Y, Ge S X, Chang W D, Luo J Chang. Nitrate in groundwater of China: sources and driving forces. Global Environmental Change , 2013, 23( 5): 1112–1121
https://doi.org/10.1016/j.gloenvcha.2013.05.004
36 Z, An R J, Huang R, Zhang X, Tie G, Li J, Cao W, Zhou Z, Shi Y, Han Z, Gu Y Ji. Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences of the United States of America , 2019, 116( 18): 8657–8666
https://doi.org/10.1073/pnas.1900125116 pmid: 30988177
37 C P, Ti X, Han S X, Chang L Y, Peng L L, Xia X Y Yan. Mitigation of agricultural NH3 emissions reduces PM2.5 pollution in China: a finer scale analysis. Journal of Cleaner Production , 2022, 350 : 131507
https://doi.org/10.1016/j.jclepro.2022.131507
38 P, Xu A P, Chen B Z, Houlton Z Z, Zeng S, Wei C X, Zhao H Y, Lu Y J, Liao Z H, Zheng S J, Luan Y Zheng. Spatial variation of reactive nitrogen emissions from China’s croplands codetermined by regional urbanization and its feedback to global climate change. Geophysical Research Letters , 2020, 47( 12): e2019GL086551
39 Q, Zhu Vries W, de X, Liu T, Hao M, Zeng J, Shen F Zhang. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980−2010. Science of the Total Environment , 2018, 618 : 1497–1505
https://doi.org/10.1016/j.scitotenv.2017.09.289 pmid: 29089131
40 Z F, Wu X M, Sun Y Q, Sun J Y, Yan Y F, Zhao J Chen. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018. Geoderma , 2022, 408 : 115586
https://doi.org/10.1016/j.geoderma.2021.115586
41 Q, Zhu X, Liu T, Hao M, Zeng J, Shen F, Zhang Vries W de. Cropland acidification increases risk of yield losses and food insecurity in China. Environmental Pollution , 2020, 256 : 113145
https://doi.org/10.1016/j.envpol.2019.113145 pmid: 31662249
42 Y F, Bai J G, Wu C M, Clark S, Naeem Q M, Pan J H, Huang L X, Zhang X G Han. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology , 2010, 16( 1): 358–372
https://doi.org/10.1111/j.1365-2486.2009.01950.x
43 X K, Lu J M, Mo F S, Gilliam G Y, Zhou Y T Fang. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology , 2010, 16( 10): 2688–2700
https://doi.org/10.1111/j.1365-2486.2010.02174.x
44 W J, Han J Y, Cao J L, Liu J, Jiang J Ni. Impacts of nitrogen deposition on terrestrial plant diversity: a meta-analysis in China. Journal of Plant Ecology , 2019, 12( 6): 1025–1033
https://doi.org/10.1093/jpe/rtz036
45 X, Lu T, Yao Y, Li J C H, Fung A K H Lau. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China. Environmental Pollution , 2016, 212 : 135–146
https://doi.org/10.1016/j.envpol.2016.01.056 pmid: 26845361
46 Y T, Zhang J H, Wu B Xu. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences , 2018, 77( 7): 273
https://doi.org/10.1007/s12665-018-7456-9
47 B, Gu Y, Ge Y, Ren B, Xu W, Luo H, Jiang B, Gu J Chang. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environmental Science & Technology , 2012, 46( 17): 9420–9427
https://doi.org/10.1021/es301446g pmid: 22852755
48 L, Xia S K, Lam D, Chen J, Wang Q, Tang X Yan. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology , 2017, 23( 5): 1917–1925
https://doi.org/10.1111/gcb.13455 pmid: 27506858
49 W, Adalibieke X, Zhan X, Cui S, Reis W, Winiwarter F Zhou. Decoupling between ammonia emission and crop production in China due to policy interventions. Global Change Biology , 2021, 27( 22): 5877–5888
https://doi.org/10.1111/gcb.15847 pmid: 34403176
50 Y, Wu X, Xi X, Tang D, Luo B, Gu S K, Lam P M, Vitousek D Chen. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America , 2018, 115( 27): 7010–7015
https://doi.org/10.1073/pnas.1806645115 pmid: 29915067
51 M, Wu X M, Zhang S, Reis S, Ge B J Gu. Pollution controls in Lake Tai with the reduction of the watershed nitrogen footprint. Journal of Cleaner Production , 2022, 332 : 130132
https://doi.org/10.1016/j.jclepro.2021.130132
52 S, Wang J, Xing C, Jang Y, Zhu J S, Fu J Hao. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environmental Science & Technology , 2011, 45( 21): 9293–9300
https://doi.org/10.1021/es2022347 pmid: 21939216
53 L T, Wang Z, Wei J, Yang Y, Zhang F F, Zhang J, Su C C, Meng Q Zhang. The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmospheric Chemistry and Physics , 2014, 14( 6): 3151–3173
https://doi.org/10.5194/acp-14-3151-2014
54 W T, Wang Z M, Yu X X, Song Z X, Wu Y Q, Yuan P, Zhou X H Cao. The effect of Kuroshio Current on nitrate dynamics in the southern East China Sea revealed by nitrate isotopic composition. Journal of Geophysical Research. Oceans , 2016, 121( 9): 7073–7087
https://doi.org/10.1002/2016JC011882
55 X J, Liu W, Xu Z P, Sha Y Y, Zhang Z, Wen J X, Wang F S, Zhang K Goulding. A green eco-environment for sustainable development: framework and action. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 67–74
https://doi.org/10.15302/J-FASE-2019297
56 Q, Li X, Cui X, Liu M, Roelcke G, Pasda W, Zerulla A H, Wissemeier X, Chen K, Goulding F Zhang. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Scientific Reports , 2017, 7( 1): 43853
https://doi.org/10.1038/srep43853 pmid: 28272451
57 Q Q, Li A L, Yang Z H, Wang M, Roelcke X P, Chen F S, Zhang G, Pasda W, Zerulla A H, Wissemeier X J Liu. Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China. Field Crops Research , 2015, 175 : 96–105
https://doi.org/10.1016/j.fcr.2015.02.005
58 M, Li H, Liu G N, Geng C P, Hong F, Liu Y, Song D, Tong B, Zheng H Y, Cui H Y, Man Q, Zhang K B He. Anthropogenic emission inventories in China: a review. National Science Review , 2017, 4( 6): 834–866
https://doi.org/10.1093/nsr/nwx150
59 E, Tambo W, Duo-Quan X N Zhou. Tackling air pollution and extreme climate changes in China: implementing the Paris climate change agreement. Environment International , 2016, 95 : 152–156
https://doi.org/10.1016/j.envint.2016.04.010 pmid: 27107974
60 C, Ti L, Xia S X, Chang X Yan. Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environmental Pollution , 2019, 245 : 141–148
https://doi.org/10.1016/j.envpol.2018.10.124 pmid: 30415033
61 J K, Duan C C, Ren S T, Wang X M, Zhang S, Reis J M, Xu B J Gu. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food , 2021, 2( 12): 1014–1022
https://doi.org/10.1038/s43016-021-00415-5
62 B, Gu X, Zhang X, Bai B, Fu D Chen. Four steps to food security for swelling cities. Nature , 2019, 566( 7742): 31–33
https://doi.org/10.1038/d41586-019-00407-3 pmid: 30718889
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed