Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2009, Vol. 4 Issue (1) : 89-92    https://doi.org/10.1007/s11458-009-0010-2
RESEARCH ARTICLE
Synthesis of 4-arm methyl methacrylate star polymer by atom transfer radical polymerization
Huaming SUN, Ziwei GAO(), Lin YANG, Lingxiang GAO
College of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, China
 Download: PDF(127 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synthesis of 4-arm methyl methacrylate star polymer had been achieved successfully by atom transfer radical polymerization using CuCl as catalyst, 2, 2¢- bipyridyl as ligand and pentaerythritol tetrakis (2-bromoisobutyrate) as the initiator. The star polymer was characterized by 1H-NMR and GPC, by which the precise 4-arm structure of the PMMA was confirmed.

Keywords living radical polymerization      atom transfer radical polymerization      star polymer      methyl methacrylate     
Corresponding Author(s): GAO Ziwei,Email:zwgao@snnu.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Lingxiang GAO,Ziwei GAO,Lin YANG, et al. Synthesis of 4-arm methyl methacrylate star polymer by atom transfer radical polymerization[J]. Front Chem Chin, 2009, 4(1): 89-92.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0010-2
https://academic.hep.com.cn/fcc/EN/Y2009/V4/I1/89
Fig.1  Synthetic route of the star polymer
Fig.2  GPC traces of 4-arm star PMMA and its hydrolysate
Fig.3  GPC traces of the mixture of linear and 4-arm star PMMA, obtained by using an equimolar mixture of monohalide and tetrahalide as initiators
SampleTime/hConversion/%Mn, theoMn, GPCPDI
(PMMA)4-1(PMMA)4-2(PMMA)4-348124570901800028000360001605025000326901.231.251.24
Tab.1  Molecular characterization results of 4-arm star PMMA obtained by ATRP
Fig.4  and / versus conversion for the ATRP of MMA
Fig.5  Gel permeation chromatograms of a 4-arm star PMMA
Fig.6  H-NMR spectra of a 4-arm star PMMA in CDCl
1 Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev , 2001, 101(12): 3689–746
doi: 10.1021/cr9901182
2 Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev , 2001, 101(9): 2921–90
doi: 10.1021/cr940534g
3 Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society , 1995, 117(20): 5614–15
doi: 10.1021/ja00125a035
4 Gao H, Ohno S, Matyjaszewski K. Low polydispersity star polymers via cross-linking macromonomers by ATRP. J Am Chem Soc , 2006, 128(47): 15111–3
doi: 10.1021/ja066964t
5 Min K, Gao H, Matyjaszewski K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J Am Chem Soc , 2005, 127(11): 3825–30
doi: 10.1021/ja0429364
6 Hong K, Uhrig D, Mays J W. Living anionic polymerization. Current Opinion in Solid State & Materials Science , 2000, 4(6): 531–538
doi: 10.1016/S1359-0286(00)00011-5
7 Schaefgen J R, Flory P J. Synthesis of multichain polymers and investigation of their viscosities. Journal of the American Chemical Society , 1948, 70: 2709–18
doi: 10.1021/ja01188a026
8 Matyjaszewski K, Miller P J, Pyun J, Kickelbick G, Diamanti S. Synthesis and Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators. Macromolecules , 1999, 32(20): 6526–6535
doi: 10.1021/ma9904823
9 Xu Y, Pan C. Block and Star-Block Copolymers by Mechanism Transformation. 3. S-(PTHF-PSt)4 and S-(PTHF-PSt-PMMA)4 from Living CROP to ATRP. Macromolecules , 2000, 33(13): 4750–4756
doi: 10.1021/ma991736n
10 Hadjichristidis N. Synthesis of Miktoarm star (micro-star) polymers. Journal of Polymer Science, Part A: Polymer Chemistry , 1999, 37(7): 857–871
doi: 10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P
11 Hirao A, Kawasaki K, Higashihara T. Precise synthesis of asymmetric star-shaped polymers by coupling reactions of new specially designed polymer anions with chain-end-functionalized polystyrenes with benzyl bromide moieties. Science and Technology of Advanced Materials , 2004, 5(4): 469–477
doi: 10.1016/j.stam.2004.01.015
12 Zhang X, Xia J, Matyjaszewski K. End-functional poly(tert-butyl acrylate) star polymers by controlled radical polymerization. Macromolecules , 2000, 33(7): 2340–2345
doi: 10.1021/ma991076m
13 Kasko A M, Heintz A M, Pugh C. The effect of molecular architecture on the thermotropic behavior of poly[11-(4'-cyanophenyl-4''-phenoxy)undecyl acrylate] and its relation to polydispersity. Macromolecules , 1998, 31(2): 256–271
doi: 10.1021/ma971279f
14 Heise A, Hedrick J L, Trollss M, Miller R D, Frank C W.Novel starlike poly(methyl methacrylate)s by controlled dendritic free radical initiation. Macromolecules , 1999, 32(1): 231–235
doi: 10.1021/ma980924v
15 Dayananda K, Dhamodharan R. ATRP of methyl methacrylate using a novel binol ester-based bifunctional initiator. Journal of Polymer Science, Part A: Polymer Chemistry , 2004, 42(4): 902–915
doi: 10.1002/pola.11036
[1] ZOU Peng, PAN Caiyuan. Synthesis and self-assembly of reactive H-shaped block copolymers[J]. Front. Chem. China, 2008, 3(4): 480-484.
[2] LIU Chunyan, JIN Zhaoguo, ZHANG Wengong. Nanocarbon-poly(methyl methacrylate) composite materials[J]. Front. Chem. China, 2007, 2(1): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed