Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2009, Vol. 4 Issue (2) : 154-159    https://doi.org/10.1007/s11458-009-0022-y
RESEARCH ARTICLE
Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process
Huaping ZHU, Hao LI, Huiyu SONG, Shijun LIAO()
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nano-sized cobalt particles with the diameter of 2 nm were prepared via an organic colloidal process with sodium formate, ethylene glycol and sodium citrate as the reducing agent, the solvent and the complexing agent, respectively. The effects of sodium citrate on the yield, crystal structure, particle size and size distribution of the prepared nano-sized cobalt particles were then investigated. The results show that the average particle diameter decreases from 200 nm to 2 nm when the molar ratio of sodium citrate to cobalt chloride changes from 0 to 6. Furthermore, sodium citrate plays a crucial role in the controlling of size distribution of the nano-sized particles. The size distribution of the particle without sodium citrate addition is in range from tens of nanometers to 300 or 400 nm, while that with sodium citrate addition is limited in the range of (2±0.25) nm. Moreover, it is found that the addition of sodium citrate as a complex agent could decrease the yield of the nano-sized cobalt particle.

Keywords sodium citrate      cobalt      organic colloidal process      nano-sized material      complexation     
Corresponding Author(s): LIAO Shijun,Email:chsjliao@scut.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Huaping ZHU,Hao LI,Huiyu SONG, et al. Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process[J]. Front Chem Chin, 2009, 4(2): 154-159.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-009-0022-y
https://academic.hep.com.cn/fcc/EN/Y2009/V4/I2/154
Fig.1  TEM images of cobalt nanoparticles prepared in different molar ratios of sodium citrate to cobalt chloride
Fig.2  Size distribution of cobalt nanoparticles prepared in different molar ratio of sodium citrate to cobalt chloride
Sample numberMolar ratio of sodium citrate to cobalt chlorideMolar ratio of sodium formate to cobalt chlorideYield/%
10085.7
22025.0
3400
40491.2
52469.2
64455.7
76446.2
Tab.1  The yields of cobalt nanoparticle prepared in different molar ratio of sodium citrate to cobalt chloride
Fig.3  Effect of reaction time on the yields of Co nanoparticles
Fig.4  XRD patterns of the cobalt nanoparticles
1 Dinega D P, Bawendi M G. A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed , 1999, 38(12): 1788-1791
doi: 10.1002/(SICI)1521-3773(19990614)38:12<1788::AID-ANIE1788>3.0.CO;2-2
2 Evans P R, Yi G, Schwarzacher G. Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes. Appl Phys Lett , 2000, 76(4): 481-483
doi: 10.1063/1.125794
3 Pankhurst Q A, Connolly J, Jones S K, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys , 2003, 36(13): R167-R181
doi: 10.1088/0022-3727/36/13/201
4 Tripp S L, Pusztay SV, Ribbe A E, Wei A. Self-assembly of cobalt nanoparticle rings. J Am Chem Soc , 2002, 124 (27): 7914-7915
doi: 10.1021/ja0263285
5 Kapoor S, Salunke H G, Pande B M, Kulshreshtha S K, Mittal J P. Radiolytic preparation of nanophase cubic cobalt metal particles. Materials Research Bulletin , 1998, 33(10): 1555-1562
doi: 10.1016/S0025-5408(98)00136-6
6 Javey A, Dai D. Regular arrays of 2 nm metal nanopartilces for deterministic synthesis of nanomaterials. J Am Chem Soc , 2005, 127(34): 11942-11943
doi: 10.1021/ja0536668
7 Grass R N, Stark W J. Gas phase synthesis of fcc-cobalt nanoparticles. J Mater Chem , 2006, 16(19): 1825-1830
doi: 10.1039/b601013j
8 Cushing B L, Kolesnichenko V L, O’ Connor C J. Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev , 2004, 104(9): 3893-3946
doi: 10.1021/cr030027b
9 Xie B Q, Qian Y, Zhang S, Fu S, Yu W. A hydrothermal reaction route to single-crystalline hexagonal cobalt nanowires. Eur J Chem , 2006, 2006(12): 2454-2459
10 Lamer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc , 1950, 72(11): 4847-4854
11 Hinotsu T, Jeyadevan B,Chinnasamy C N, Shinoda K, Tohji K. Size and structure control of magnetic nanoparticles by using a modified polyol process. J Appl Phys , 2004, 95 (11): 7477-7479
doi: 10.1063/1.1688534
12 Guo J W, Zhao T S, Pranhuram J, Wong C W. Preparation of the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochimica Acta , 2005, 50 (10): 1973-1983
doi: 10.1016/j.electacta.2004.09.006
[1] Saeed-UR-REHMAN, Muhammad IKRAM, Sadia REHMAN, Shah NAWAZ. Bioassay studies of cobalt (II) complexes of modified diamine[J]. Front Chem Chin, 2011, 6(2): 98-104.
[2] XIAO Furong, CHEN Lu, WANG Jide, WU Ronglan, YUE Fan, LI Jing. Studies on solid state synthesis and the oxygenation property of cobalt (II) Schiff base (vanilline polyamine) complexes[J]. Front. Chem. China, 2007, 2(2): 169-173.
[3] Hu Meixian, Li Ning, Yao Kemin. Synthesis and characterization of rare earth complexes with Phthalaldehyde-lysine Schiff base[J]. Front. Chem. China, 2006, 1(4): 369-373.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed