Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (3) : 248-252    https://doi.org/10.1007/s11458-011-0247-4
RESEARCH ARTICLE
Investigation of the interaction of ethyl acetoacetate with nano alumina particle as Lewis acid in acetonitrile solvent
Asadollah FARHADI1(), Mohammad Ali TAKASSI1, Mandana DAYER2
1. Faculty of Science, Petroleum University of Technology, Ahwaz 61981-44471, Iran; 2. Department of Chemistry, Science and Research Branch, Islamic Azad University, Khouzestan, Iran
 Download: PDF(147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The enol form of ethyl acetoacetate (EAA) displays interesting spectroscopic characteristics; this form of ethyl acetylacetate is very important in condensation reaction. In this investigation, we have studied the interactions and the complex formation constants (Kf) with nano alumina (10–20 nm) particle and alumina (mesh 135) compounds as Lewis acids in the acetonitrile solvent using absorption spectroscopy and related calculations. Furthermore, in this study we calculated the thermodynamic parameters of this reaction. The trend of reactivity of the ethyl acetoacetate (EAA) complexes toward the above Lewis acids, based on the solvent as follows: nano alumina compound>alumina compound.

Keywords complex formation constant      ethyl acetoacetate      nano alumina      alumina      thermodynamic     
Corresponding Author(s): FARHADI Asadollah,Email:farhadichem@yahoo.com   
Issue Date: 05 September 2011
 Cite this article:   
Asadollah FARHADI,Mohammad Ali TAKASSI,Mandana DAYER. Investigation of the interaction of ethyl acetoacetate with nano alumina particle as Lewis acid in acetonitrile solvent[J]. Front Chem Chin, 2011, 6(3): 248-252.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0247-4
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I3/248
Fig.1  Keto-enol tautomerization of EAA with different Lewis acids in the acetonitrile solvent at various temperatures
Fig.2  The absorption spectra of EAA with AlO (nano) in acetonitrile as solvent at different temperatures
SolventConcentration of EAAλmax /nmA
Acetonitrile2 × 10-3242.90.182
Tab.1  Data of wavelengths ( nm) and absorption bond () of ethyl acetoacetate in acetonitrile solvent at room temperature
Lewis acidSolventA
Al2O3 (nano)Acetonitrile0.240
Al2O3Acetonitrile0.328
Tab.2  The fixed wavelengths (242 nm) and absorption bond () of EAA in various systems at room temperature
Fig.3  A) Plots of () / vs. () for EAA complex with AlO (nano) at various temperatures ( = 25°C-45°C) in acetonitrile; B) Plots of () / vs. () for EAA complex with AlO at various temperatures ( = 25°C-45°C) in acetonitrile.
Fig.4  (a) Plot of ln vs. 1/for EAA complex with AlO (nano) in acetonitrile; (b)-(d) Plot of ln vs. 1/ for EAA complex with AlO in acetonitrile
T (K)298303308313318
CH3CN828.57±10567.21±12952.15±201380.90±15612.87±20
Tab.3  The formation constants (mol/L) for EAA complex with AlO (nano) (10-20 nm) in acetonitrile solvent
T (K)298303308313318
CH3CN430.36±15638.47±8205.57±13750.36±15688.25±10
Tab.4  The formation constants (mol/L) for EAA complex with AlO (mesh 135) in acetonitrile solvent
Solvent?H° /(kJ·mol-1)-?G° /(kJ·mol-1)?S° /(kJ·mol-1)
CH3CN73.99014.5160.297
Tab.5  The thermodynamic parameter values (?H°, ?S° and ?G°) for EAA with AlO (nano) in acetonitrile solvent at room temperature
Solvent?H° /(kJ·mol-1)-?G° /(kJ·mol-1)?S° /(kJ·mol-1)
CH3CN3.80023.3180.091
Tab.6  The thermodynamic parameter values (?H°, ?S° and ?G°) for EAA with AlO in acetonitrile solvent at room temperature
Lewis acidSolventT/°CConcentration of EAAλmax /nmA
Al2O3 (nano)Acetonitrile252 × 10-3243.30.240
30243.30.256
35242.90.292
40243.30.282
45242.50.312
Al2O3Acetonitrile252 × 10-3242.50.328
30242.90.335
35242.90.340
40243.30.339
45243.30.339
Tab.7  Data of wavelengths ( /nm) and absorption bonds () of ethyl acetoacetate (EAA) in acetonitrile solvent with two Lewis acids at various temperatures
1 Siedle, A. R., Comprehensive Coordination Chemistry, vol. 2, ed., G. Wilkinson, Pergamon Press, Oxford, 1987, pp. 365-412
2 Mehrotra, R. C.; Bohra, R.; Gaur, D. P., Metal β-Diketonates and Allied Derivatives, Academic Press, London, 1978
3 Fackler, J. P. Jr, Prog. Inorg. Chem . 1966, 7, 361-425
doi: 10.1002/9780470166086.ch6
4 Kawaguchi, S., Coord. Chem. Rev . 1986, 70, 51-84 .
doi: 10.1016/0010-8545(86)80035-2
5 Garnovskii, A. D., Koord. Khim. 1992, 18, 675-680
6 Hinckley, C. C., J. Am. Chem. Soc. 1969, 91, 5160-5162
doi: 10.1021/ja01046a038 pmid:5798101
7 Wenzel, T. J.; Bettes, T. C.; Sadlowski, J. E.; Sievers, R. E., J. Am. Chem. Soc . 1980, 102, 5903-5904
doi: 10.1021/ja00538a032
8 Wenzel, T. J.; Zaia, J., J. Org. Chem . 1985, 50, 1322-1324
doi: 10.1021/jo00208a041
9 Brecher, C.; Lempicki, A.; Samelson, H., J. Chem. Phys . 1965, 42, 1081-1096
doi: 10.1063/1.1696045
10 Nugent, L. J.; Bhaumik, M. L.; George, S.; Lee, S. M., J. Chem. Phys . 1964, 41, 1305
doi: 10.1063/1.1726064
11 Poskanzer, A. M.; Foreman, B. M., J. Inorg. Nucl. Chem . 1961, 16, 323-336
doi: 10.1016/0022-1902(61)80507-1
12 Testa, C., Anal. Chim. Acta 1961, 25, 525
13 Ikehata, A.; Shimizu, T., Bull. Chem. Soc. Jpn. 1965, 38, 1385-1388
doi: 10.1246/bcsj.38.1385
14 Anjaneyulu, Y.; Rao, R. P.,Synth. React. Inorg. Metal-Org. Chem. 1986, 16, 257-261
15 Keppler, B. K.; Friesen, C.; Moritz, H. G.; Vongerichten, H.; Vogel, E., Struct. Bonding (Berlin) 1991, 78, 97-127
16 Marciniak, B.; Buono-Core, G. E., J. Photochem. Photobiol. Chem . 1990, 52, 1-25
doi: 10.1016/1010-6030(90)87085-P
17 Hubert-Pfalzgraf, L. G., Appl. Organomet. Chem . 1992, 6, 627-643
doi: 10.1002/aoc.590060805
18 Sievers, R. E.; Turnipseed, S. B.; Huang, L.; Lagalante, A. F., Coord. Chem. Rev . 1993, 128, 285-291
doi: 10.1016/0010-8545(93)80035-4
19 Robards, K.; Patsalides, E.; Dilli, S., J. Chromatogr. A 1987, 411, 1-41
doi: 10.1016/S0021-9673(00)93958-X
20 Komarov, V. A., Zh. Anal. Khim . 1976, 31, 366-375
21 van Leeuwen, P. W. N. M., Recl. Trav. Chim. Pays Bas 1968, 87, 396-402
doi: 10.1002/recl.19680870409
22 van Leeuwen, P. W. N. M.; Praat, A. P., Inorg. Chim. Acta 1970, 4, 101-104
doi: 10.1016/S0020-1693(00)93248-1
23 Allred, A. L.; Thompson, D. W., Inorg. Chem . 1968, 7, 1196-1201
doi: 10.1021/ic50064a029
24 Blanco, C. A.; Hynes, M. J., Can. J. Chem . 1992, 70, 2285-2289
doi: 10.1139/v92-287
25 Pearson, R. G.; Anderson, O. P., Inorg. Chem . 1970, 9, 39-46
doi: 10.1021/ic50083a008
26 Fay, D. P.; Nichols, A. R.; Sutin, N., Inorg. Chem . 1971, 10, 2096-2101
doi: 10.1021/ic50104a002
27 Ketelaar, J. A. A.; van de Stolpe, C.; Coulsmith, A.; Dzcubes, W., Rec. Trav. Chim . 1952, 71, 1104-1114
doi: 10.1002/recl.19520711108
28 Asadi, M.; Kianfar, A. H.; Hemateenejad, B., J. Chem. Res . 2002, 520-523
doi: 10.3184/030823402103170600
29 Khodaei, M. M.; Khosropour, A. R.; Beygzadeh, M., Synth. Commun . 2004, 34, 1551-1557
doi: 10.1081/SCC-120030742
[1] A. Rasheed KHAN, Fahim UDDIN, Rehana SAEED, Mahjabeen MUKHTAR. Effects of CuCl2·6H2O and ZnCl2·6H2O on the viscosity of aqueous ethanol mixtures[J]. Front Chem Chin, 2011, 6(2): 113-119.
[2] Xiaojing LU, Yin PENG, . The first rare-earth fluoride one-dimensional nanostructures: template synthesis of LnF 3 (Ln=Eu, La) nanotubes[J]. Front. Chem. China, 2010, 5(1): 76-79.
[3] Wenbing HU, . Statistical thermodynamics of polymer crystallization[J]. Front. Chem. China, 2010, 5(1): 29-32.
[4] Jie HE, Yining FAN, . The state of the dispersed niobia species on γ-Al 2 O 3 and their catalytic performance for the condensation of isobutylene and isobutyraldehyde[J]. Front. Chem. China, 2010, 5(1): 109-112.
[5] Lina YU, Dongfeng WANG, Weisheng HU, Haiyan LI, Minmin TANG. Study on the preparation and adsorption thermodynamics of chitosan microsphere resins[J]. Front Chem Chin, 2009, 4(2): 160-167.
[6] Bozhou WANG, Weipeng LAI, Qian LIU, Peng LIAN, Yongqiang XUE. Synthesis, characterization and quantum chemistry study of 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine[J]. Front Chem Chin, 2009, 4(1): 69-74.
[7] YAN Jinhong, ZHANG Cuiping, YANG Pin. Study on inclusion complexes of hydroxypropyl-β-cyclodextrin with tanshinone IIA[J]. Front. Chem. China, 2007, 2(1): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed