Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (3) : 164-172    https://doi.org/10.1007/s11458-011-0250-9
REVIEW ARTICLE
Mechanism and kinetics for methanol synthesis from CO2/H2 over Cu and Cu/oxide surfaces: Recent investigations by first-principles-based simulation
Qiuyang SUN, Zhipan LIU()
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory of Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, China
 Download: PDF(329 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The efficient fixation and utilization of CO2 has been consistently pursued by chemists for decades. Although Cu-based catalysts, e.g., Cu/ZnO/Al2O3, have been widely used in industry for methanol synthesis from CO2 hydrogenation (CO2 + 3H2→H3COH+ H2O), many issues on the mechanism and the kinetics remain largely uncertain. For example, the surface site for CO2 activation and the synergetic effect between Cu and oxide have been hotly debated in literature. In the past few years, theoretical modeling on pure Cu surfaces and Cu/oxide interfaces has been utilized to provide insight into these important questions. Here we will review the recent theoretical advances on simulating this complex heterogeneous catalytic process with first principles density functional theory (DFT) calculations and kinetics modeling. The theoretical results on the mechanism and the kinetics are compared and summarized.

Keywords density functional theory calculation      CO2 hydrogenation      methanol synthesis      Cu-based catalysts      review     
Corresponding Author(s): LIU Zhipan,Email:zpliu@fudan.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Qiuyang SUN,Zhipan LIU. Mechanism and kinetics for methanol synthesis from CO2/H2 over Cu and Cu/oxide surfaces: Recent investigations by first-principles-based simulation[J]. Front Chem Chin, 2011, 6(3): 164-172.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0250-9
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I3/164
Fig.1  (a) A model adcluster for Cu(100); (b) a Cu nanoparticle; (c) Cu(111) surface; (d) Cu strip at the stepped m-ZrO(12). Reprinted from Refs. [,,,] respectively.
CatalystC-containing intermediatesRate determining step(s)Ea/eV
Cu+ [25]HCOO-,H2CO, H3CO-__
Cu(100) [26]HCOO, H2COO, H2CO, H3COHCOO* + H*→H2COO1.00
Cu(111) [27]HCOO, HCOOH, H2COOH, H3CO* + H*→H3COH*;1.17;
H2CO, H3COOH* + H*→H2O*1.18
Cu(111) [3]HCOO, H2COOH2COO* + H*→H2CO* + OH*1.60
H2CO, H3CO
Cu29 [3]HCOO, H2COOH2COO* + H*→H2CO* + OH*1.41
H2CO, H3CO
Cu/ZrO2 [23]HCOO, H2COO, H2COOH, H2CO, H3COH2COO* + H*→H2COOH*;1.30;
H3CO* + H*→H3COH*1.28
Tab.1  Mechanisms of methanol synthesis from CO/H determined on different Cu-based model systems
Fig.2  Potential Energy Surface (PES) of methanol synthesis on Cu (111) from CO through competing pathways. The black line indicates the lowest energy pathway through the: HCOO*, HCOOH*, CHO*, CHO* and CHO* intermediates. The main intermediates along the red path are: HCOO*, HCO*, CHO*, and CHOH*. The two dashed horizontal lines indicate the desorption barriers of HCOOH and CHO. Reprinted from Ref. [].
Fig.3  Potential energy diagram for the methanol synthesis reaction on the Cu(111) surface and Cu nanoparticle, where the thin bar represents the intermediates and the thick bar represents the transition states. The upper diagram corresponds to Cu(111) and the lower diagram corresponds to Cu. Reprinted from Ref. []
Fig.4  Proposed reaction mechanism of CO hydrogenation over Cu/ZrO according to kMC simulation results. Solid and broken lines are the major and minor routes, respectively. The percentage labeled on the arrows show contributions of elementary steps. Reprinted from Ref. []
1 Strunk, J.; Kahler, K.; Xia, X.; Muhler, M., Surf. Sci. 2009, 603, 1776-1783
doi: 10.1016/j.susc.2008.09.063
2 Ostrovskii, V. E., Catal. Today 2002, 77, 141-160
doi: 10.1016/S0920-5861(02)00241-9
3 Yang, Y.; Evans, J.; Rodriguez, J. A.; White, M. G.; Liu, P., Phys. Chem. Chem. Phys. 2010, 12, 9909-9917
doi: 10.1039/c001484b pmid:20567756
4 Saito, M.; Takeuchi, M.; Fujitani, T.; Toyir, J.; Luo, S.; Wu, J.; Mabuse, H.; Ushikoshi, K.; Mori, K.; Watanabe, T., Appl. Organomet. Chem. 2000, 14, 763-772
doi: 10.1002/1099-0739(200012)14:12<763::AID-AOC98>3.0.CO;2-4
5 Yu, K. M. K.; Yeung, C. M. Y.; Tsang, S. C., J. Am. Chem. Soc. 2007, 129, 6360-6361
doi: 10.1021/ja0706302 pmid:17465547
6 Yu, K. M. K.; Tsang, S. C., Catal. Lett. 2011, 141, 259-265
doi: 10.1007/s10562-010-0500-3
7 Lim, H. W.; Park, M. J.; Kang, S. H.; Chae, H. J.; Bae, J. W.; Jun, K. W., Ind. Eng. Chem. Res. 2009, 48, 10448-10455
doi: 10.1021/ie901081f
8 J. Weigel, A. Koeppel, A. Baiker, A. Wokaun Langmuir 12 (1996) 5319.
9 Baker, J. E.; Burch, R.; Golunski, S. E., Appl. Catal. 1989, 53, 279-297
doi: 10.1016/S0166-9834(00)80027-5
10 Koeppel, R. A.; Baiker, A.; Schild, C.; Wokaun, A., Stud. Surf. Sci. Catal. 1991, 63, 59-68
doi: 10.1016/S0167-2991(08)64572-3
11 Shustorovich, E.; Bell, A. T., Surf. Sci. 1991, 253, 386-394
doi: 10.1016/0039-6028(91)90609-V
12 Sun, Y.; Sermon, P. A., Catal. Lett. 1994, 29, 361-369
doi: 10.1007/BF00807115
13 Yoshihara, J.; Parker, S.; Schafer, A.; Campbell, C. T., Catal. Lett. 1995, 31, 313-324
doi: 10.1007/BF00808595
14 Yoshihara, J.; Campbell, C. T., J. Catal. 1996, 161, 776-782
doi: 10.1006/jcat.1996.0240
15 Burch, R.; Golunski, S. E.; Spencer, M. S., Catal. Lett. 1990, 5, 55-60
doi: 10.1007/BF00772093
16 Wang, X.; Zhang, H.; Li, W.; Korean, J., Chem. Eng. 2010, 27, 1093
17 Liu, Z. P.; Wang, C. M.; Fan, K. N., Angew. Chem. Int. Ed. 2006, 45, 6865-6868
doi: 10.1002/anie.200601853
18 Wang, C. M.; Fan, K. N.; Liu, Z. P., J. Am. Chem. Soc. 2007, 129, 2642-2647
doi: 10.1021/ja067510z pmid:17290994
19 Chen, J.; Liu, Z. P., J. Am. Chem. Soc. 2008, 130, 7929-7937
doi: 10.1021/ja7112239 pmid:18507384
20 Li, Y. F.; Liu, Z. P.; Liu, L.; Gao, W., J. Am. Chem. Soc. 2010, 132, 13008-13015
doi: 10.1021/ja105340b pmid:20738085
21 Shang, C.; Liu, Z. P., J. Am. Chem. Soc. 2011, 133, 9938-9947
doi: 10.1021/ja203468v pmid:21608993
22 Fang, Y. H.; Liu, Z. P., J. Am. Chem. Soc. 2010, 132, 18214-18222
doi: 10.1021/ja1069272 pmid:21133410
23 Hong, Q. J.; Liu, Z. P., Surf. Sci. 2010, 604, 1869-1876
doi: 10.1016/j.susc.2010.07.018
24 Kakumoto, T., Energy Convers. Manage. 1995, 36, 661-664
doi: 10.1016/0196-8904(95)00092-R
25 Kakumoto, T.; Watanabe, T., Catal. Today 1997, 36, 39-44
doi: 10.1016/S0920-5861(96)00194-0
26 Hu, Z. M.; Takahashi, K.; Nakatsuji, H., Surf. Sci. 1999, 442, 90-106
doi: 10.1016/S0039-6028(99)00900-0
27 GrabowL. C. , MavrikakisM. , ACS Catal . 2011, 1, 365.
28 Tang, Q. L.; Hong, Q. J.; Liu, Z. P., J. Catal. 2009, 263, 114-122
doi: 10.1016/j.jcat.2009.01.017
29 Tang, Q. L.; Liu, Z. P., J. Phys. Chem. C 2010, 114, 8423-8430
doi: 10.1021/jp100864j
30 French, S. A.; Sokol, A. A.; Bromley, S. T.; Catlow, C. R. A.; Rogers, S. C.; King, F.; Sherwood, P., Angew. Chem. Int. Ed. 2001, 40, 4437
doi: 10.1002/1521-3773(20011203)40:23<4437::AID-ANIE4437>3.0.CO;2-L
31 French, S. A.; Sokol, A. A.; Bromley, S. T.; Catlow, C. R. A.; Sherwood, P., Top. Catal. 2003, 24, 161-172
doi: 10.1023/B:TOCA.0000003087.47073.de
32 Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Thomas, J. M., Philos. Transact. A Math. Phys. Eng. Sci. 2005, 363, 913-936, discussion 1035-1040
doi: 10.1098/rsta.2004.1529 pmid:15901543
33 Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Rev. Mod. Phys. 1992, 64, 1045-1097
doi: 10.1103/RevModPhys.64.1045
34 Kresse, G.; Hafner, J., J. Phys. Condens. Matter 1994, 6, 8245-8257
doi: 10.1088/0953-8984/6/40/015
35 Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D., J. Phys. Condens. Matter 2002, 14, 2745-2779
doi: 10.1088/0953-8984/14/11/302
36 Junquera, J.; Paz, O.; Sanchez-Portal, D.; Artacho, E., Phys. Rev. B 2001, 64, 235111
doi: 10.1103/PhysRevB.64.235111
37 Vanderbilt, D., Phys. Rev. B 1990, 41, 7892-7895
doi: 10.1103/PhysRevB.41.7892
38 Troullier, N.; Martins, J. L., Phys. Rev. B 1991, 43, 1993-2006
doi: 10.1103/PhysRevB.43.1993
39 Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Phys. Rev. B 1992, 46, 6671-6687
doi: 10.1103/PhysRevB.46.6671
40 Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett. 1996, 77, 3865-3868
doi: 10.1103/PhysRevLett.77.3865 pmid:10062328
41 García-Gil, S.; García, A.; Lorente, N.; Ordejón, P., Phys. Rev. B 2009, 79, 075441
doi: 10.1103/PhysRevB.79.075441
42 Monkhorst, H. J.; Pack, J. D., Phys. Rev. B 1976, 13, 5188-5192
doi: 10.1103/PhysRevB.13.5188
43 Henkelman, G.; Uberuaga, B. P.; Jonsson, H., J. Chem. Phys. 2000, 113, 9901
doi: 10.1063/1.1329672
44 Wang, H. F.; Liu, Z. P., J. Am. Chem. Soc. 2008, 130, 10996-11004
doi: 10.1021/ja801648h pmid:18642913
45 Henkelman, G.; Jonsson, H., J. Chem. Phys. 1999, 111, 7010
doi: 10.1063/1.480097
46 Shang, C.; Liu, Z. P., J. Chem. Theory Comput. 2010, 6, 1136-1144
doi: 10.1021/ct9005147
47 Halgren, T. A.; Lipscomb, W. N., Chem. Phys. Lett. 1977, 49, 225-232
doi: 10.1016/0009-2614(77)80574-5
48 Temel, B.; Meskine, H.; Reuter, K.; Scheffler, M.; Metiu, H. J., Chem. Phys. 2007, 126, 204711
49 Chatterjee, A.; Vlachos, D. G., J. Comput. Aided Mater. Des. 2007, 14, 253-308
doi: 10.1007/s10820-006-9042-9
50 Levi, A. C.; Kotrla, M., J. Phys. Condens. Matter 1997., 9, 299-344
doi: 10.1088/0953-8984/9/2/001
51 Nakatsuji, H., J. Chem. Phys. 1987, 87, 4995
doi: 10.1063/1.452814
52 Nakano, H.; Nakamura, I.; Fujitani, T.; Nakamura, J., J. Phys. Chem. B 2001, 105, 1355-1365
doi: 10.1021/jp002644z
53 Wambach, J.; Baiker, A.; Wokaun, A., Phys. Chem. Chem. Phys. 1999, 1, 5071-5080
doi: 10.1039/a904923a
54 Schilke, T. C.; Fisher, I. A.; Bell, A. T., J. Catal. 1999, 184, 144-156
doi: 10.1006/jcat.1999.2434
55 Schild, C.; Wokaun, A.; Baiker, A., J. Mol. Catal. 1990, 63, 243-254
doi: 10.1016/0304-5102(90)85147-A
56 Jennings, J. R.; Lambert, R. M.; Nix, R. M.; Owend, G.; Parker, D. G., Appl. Catal. 1989, 50, 157-170
doi: 10.1016/S0166-9834(00)80833-7
[1] YANG Tao, NIU Li, LI Zhuang, DONG Shaojun. Applications of scanning probe microscopy in intrinsically conducting polymer research[J]. Front. Chem. China, 2007, 2(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed