Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (3) : 213-220    https://doi.org/10.1007/s11458-011-0253-6
RESEARCH ARTICLE
Facile synthesis of silica-polymer hybrids via simultaneous RAFT process and hydroxyl-alkoxysilane coupling reaction
Chunnuan YE, Weina QI, Xinhua YU, Peipei ZHANG, Tengteng HOU, Youliang ZHAO()
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
 Download: PDF(262 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study aimed at the synthesis of silica particles grafted with better-defined homopolymers and block copolymers by tandem approach. Z-functionalized S-benzyl S’-(3-trimethoxysilyl)propyltrithiocarbonate (BTPT) was used as a couplable RAFT agent to synthesize the target inorganic-organic hybrids. Simultaneous coupling reaction and RAFT process using silica particles and BTPT as raw materials efficiently afforded homopolymers grafted silica, and RAFT-synthesized macro chain transfer agents with ω-terminal trimethoxysilane moiety were utilized to mediate graft reaction to prepare silica particles grafted with di-, tri- and tetrablock copolymers comprised of polymer segments such as polystyrene, polyacrylamides and polyacrylates. When the grafted chains had molecular weights ranging between 3920 and 24800 g/mol, the molar grafting ratios, which were dependent on reaction conditions and types and compositions of grafted chains, were estimated to be in the range of 15.2–101 μmol/g, and grafted polymers usually had polydispersity indices lower than 1.3, revealing that the grafting process was almost controllable. To the best of our knowledge, this versatile tandem approach is one of the most facile techniques to prepare silica particles grafted with polymeric chains with controlled molecular weight, low polydispersity and precise composition due to its minimal reaction steps, mild conditions, straightforward synthesis and satisfactory controllability.

Keywords hybrid material      reversible addition fragmentation chain transfer (RAFT)      coupling reaction      block copolymer      surface modification     
Corresponding Author(s): ZHAO Youliang,Email:ylzhao@suda.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Chunnuan YE,Weina QI,Xinhua YU, et al. Facile synthesis of silica-polymer hybrids via simultaneous RAFT process and hydroxyl-alkoxysilane coupling reaction[J]. Front Chem Chin, 2011, 6(3): 213-220.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0253-6
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I3/213
Fig.1  Synthesis of homopolymers and block copolymers grafted silica via tandem coupling reaction and RAFT polymerization mediated by Z-alkoxysilane-functionalized RAFT agent
Fig.2  Pseudo-first-order kinetic curves for one-pot RAFT graft polymerization of MA mediated by BTPT. Reaction conditions: [MA]∶[BTPT]∶[AIBN] = 200∶1∶0.1, [MA] = 3.0 mol/L, / = 0.50 mmol/g, in toluene at 60°C.
Fig.3  Dependence of and PDI of free (circle) and grafted (triangle) PMAs on conversion. See Fig. 1 for polymerization conditions.
Fig.4  Effects of conversion on weight and molar grafting ratios of PMA grafted silica. See Fig. 1 for polymerization conditions.
Fig.5  Dependence of molar grafting ratio and (g)/(f) on molecular weight of grafted chains during tandem reaction to synthesize PMA grafted silica. See runs 1–5 of Table 1 for reaction conditions.
RunM[M]0/[BTPT]0C%b)Mn(th)c)Mn(g)d)PDI(g)d)Mn(f)e)PDI(f)e)Gr/%f)Gp /(μmol/g)g)
1MA5090.5426039201.2445201.2239.6101
2MA10092.4832062701.1794801.1547.575.8
3MA20093.216400112001.20178001.1845.941.0
4MA30091.223900155001.25273001.2745.229.2
5MA40087.330400171001.32327001.2542.424.8
6St15030.8517043201.2862001.2418.843.5
7DMA10098.81020063601.18113001.1433.252.2
8BA10090.51190069501.16128001.1539.757.1
Tab.1  Synthesis of homopolymers grafted silica by tandem approach using BTPT mediator
RunCTAM[M]0/[CTA]0T /hC/%Mn(th)Mn(GPC)PDI
1BTPTSt2002026.3584053901.19
2BTPTNIPAM601588.2634063001.16
3BTPTDMA601588.9564057301.18
4PStNIPAM801870.911800115001.15
5PStDMA801873.411200113001.14
6PSt-b-PNIPAMtBA1002048.417700178001.20
7PSt-b-PDMAtBA1002047.617400180001.25
Tab.2  RAFT polymerization of various monomers mediated by BTPT and macro CTAs
RunMacro CTAC/%b)Mn(th)c)Mn(g)d)PDI(g)d)Mn(f)e)PDI(f)f)Gr /%g)Gp /(μmol·g-1)
1PSt70.917600144001.20196001.2533.223.1
2PNIPAM61.016800138001.22183001.2632.523.6
3PDMA67.217300136001.25186001.2834.625.4
4PSt-b-PNIPAM48.219800182001.21223001.2931.417.3
5PSt-b-PDMA53.420500176001.18212001.2035.620.2
6PSt-b-PNIPAM-b-PtBA38.327700248001.22302001.2437.715.2
7PSt-b-PDMA-b-PtBA37.527700242001.24293001.2737.815.6
Tab.3  Synthesis of silica particles grafted with block copolymers by RAFT polymerization of MA mediated by various macro CTAs via one-pot method
Fig.6  TGA curves of silica particles and typical silica-polymer hybrids. The hybrid samples were synthesized by run 2 of Table 1 and runs 1, 4 and 6 of Table 3.
Fig.7  GPC traces of macro CTAs (solid line), free (dotted line) and grafted (dashed line) block copolymers obtained by tandem reaction. Free and grafted copolymers were PSt--PMA (a), PSt--PNIPAM--PMA (b) and PSt--PNIPAM--PBA--PMA (c), respectively. See runs 1, 4 and 6 in Table 3 for detailed reaction conditions.
1 de Soler-Illia, G. J.; Sanchez, C.; Lebeau, B.; Patarin, J., Chem. Rev. 2002, 102, 4093-4138
doi: 10.1021/cr0200062
2 Kickelbick, G., Prog. Polym. Sci. 2003, 28, 83-114
doi: 10.1016/S0079-6700(02)00019-9
3 Radhakrishnan, B.; Ranjan, R.; Brittain, W. J., Soft Matter 2006, 2, 386-396
doi: 10.1039/b516508c
4 Tsujii, Y.; Ohno, K.; Yamamoto, S.; Goto, A.; Fukuda, T., Adv. Polym. Sci. 2006, 197, 1-45
5 Chen, X.; Armes, S. P., Adv. Mater. (Deerfield Beach Fla.) 2003, 15, 1558-1562
doi: 10.1002/adma.200305067
6 Ranjan, R.; Brittain, W. J., Macromol. Rapid Commun. 2007, 28, 2084-2089
doi: 10.1002/marc.200700428
7 Radhakrishnan, B.; Constable, A. N.; Brittain, W. J., Macromol. Rapid Commun. 2008, 29, 1828-1833
doi: 10.1002/marc.200800435
8 Save, M.; Granvorka, G.; Bernard, J.; Charleux, B.; Boissière, C.; Grosso, D.; Sanchez, C., Macromol. Rapid Commun. 2006, 27, 393-398
doi: 10.1002/marc.200500798
9 Titirici, M. M.; Sellergren, B., Chem. Mater. 2006, 18, 1773-1779
doi: 10.1021/cm052153x
10 Ohno, K.; Morinaga, T.; Koh, K.; Tsujii, Y.; Fukuda, T., Macromolecules 2005, 38, 2137-2142
doi: 10.1021/ma048011q
11 Zhang, Y. F.; Luo, S. Z.; Liu, S. Y., Macromolecules 2005, 38, 9813-9820
doi: 10.1021/ma0518050
12 Wu, T.; Zhang, Y. F.; Wang, X. F.; Liu, S. Y., Chem. Mater. 2008, 20, 101-109
doi: 10.1021/cm702073f
13 Hong, C. Y.; You, Y. Z.; Pan, C. Y., Chem. Mater. 2005, 17, 2247-2254
doi: 10.1021/cm048054l
14 Kong, H.; Gao, C.; Yan, D. Y., J. Am. Chem. Soc. 2004, 126, 412-413
doi: 10.1021/ja0380493
15 Li, C. Z.; Benicewicz, B. C., Macromolecules 2005, 38, 5929-5936
doi: 10.1021/ma050216r
16 Li, C. Z.; Han, J.; Ryu, C. Y.; Benicewicz, B. C., Macromolecules 2006, 39, 3175-3183
doi: 10.1021/ma051983t
17 Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101, 3661-3688
doi: 10.1021/cr990119u
18 Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990
doi: 10.1021/cr940534g
19 Kamigaito, M.; Ando, T.; Sawamoto, M., Chem. Rev. 2001, 101, 3689-3745
doi: 10.1021/cr9901182
20 Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58, 379-410
doi: 10.1071/CH05072
21 Barner-Kowollik, C.; Davis, T. P.; Heuts, J. P. A.; Stenzel, M. H.; Vana, P.; Whittaker, M., J. Polym. Sci. A Polym. Chem. 2003, 41, 365-375
doi: 10.1002/pola.10567
22 Perrier, S.; Takolpuckdee, P., J. Polym. Sci. A Polym. Chem. 2005, 43, 5347-5393
doi: 10.1002/pola.20986
23 Favier, A.; Charreyre, M. T., Macromol. Rapid Commun. 2006, 27, 653-692
doi: 10.1002/marc.200500839
24 Barner, L.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C., Macromol. Rapid Commun. 2007, 28, 539-559
doi: 10.1002/marc.200600805
25 Huang, Y. K.; Hou, T. T.; Cao, X. Q.; Perrier, S.; Zhao, Y. L., Polym. Chem. 2010, 1, 1615-1623
doi: 10.1039/c0py00165a
26 Huang, Y. K.; Liu, Q.; Zhou, X. D.; Perrier, S.; Zhao, Y. L., Macromolecules 2009, 42, 5509-5517
doi: 10.1021/ma900604v
27 Hou, T. T.; Zhang, P. P.; Zhou, X. D.; Cao, X. Q.; Zhao, Y. L., Chem. Commun. (Camb.) 2010, 46, 7397-7399
doi: 10.1039/c0cc02135k
28 Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H. A., Chem. Rev. 2009, 109, 5437-5527
doi: 10.1021/cr900045a
29 Perrier, S.; Takolpuckdee, P.; Mars, C. A., Macromolecules 2005, 38, 6770-6774
doi: 10.1021/ma0506886
30 Zhao, Y. L.; Perrier, S., Macromolecules 2006, 39, 8603-8608
doi: 10.1021/ma061586y
31 Zhao, Y. L.; Perrier, S., Macromolecules 2007, 40, 9116-9124
doi: 10.1021/ma0716783
32 Nguyen, D. H.; Wood, M. R.; Zhao, Y. L.; Perrier, S.; Vana, P., Macromolecules 2008, 41, 7071-7078
doi: 10.1021/ma801328c
33 Stenzel, M. H.; Zhang, L.; Huck, W. T. S., Macromol. Rapid Commun. 2006, 27, 1121-1126
doi: 10.1002/marc.200600223
34 Roth, P. J.; Kessler, D.; Zentel, R.; Theato, P., Macromolecules 2008, 41, 8316-8319
doi: 10.1021/ma801869z
35 Chen, M.; Moad, G.; Rizzardo, E., J. Polym. Sci. A Polym. Chem. 2009, 47, 6704-6714
doi: 10.1002/pola.23711
[1] Zijian LV, Aixiang LI, Zaijun LU, . Synthesis and characterization of a novel well-defined comb-like ionomer[J]. Front. Chem. China, 2010, 5(3): 342-347.
[2] Liangzhun YANG, Lanfen ZHANG, Jun CHEN, Liwen REN, Yanting ZHU, Xiuying WANG, Xibin YU. Study on the fluorescence and thermal stability of hybrid materials Eu(Phen)2Cl3/MCM-41[J]. Front Chem Chin, 2009, 4(2): 149-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed