Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 341-354    https://doi.org/10.1007/s11458-011-0258-1
REVIEW ARTICLE
Surface-enhanced Raman scattering (SERS) based on surface plasmon resonance coupling techniques
Shuping XU, Yu LIU, Haibo LI, Weiqing XU()
State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
 Download: PDF(1171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface plasmon resonance (SPR) can provide a remarkably enhanced electromagetic field around metal surface. It is one of the enhancement models for explaining surface-enhanced Raman scattering (SERS) phonomenon. With the development of SERS theories and techniques, more and more studies referred to the configurations of the optical devices for coupling the excitation and radiation of SERS, including the prism-coupling, waveguide-coupling, and grating-coupling modes. In this review, we will summarize the recent experimental improvements on the surface plasmon-coupled SERS.

Keywords surface-enhanced Raman scattering (SERS)      electromagnetic field      surface plasmon resonance (SPR)      metal film      grating     
Corresponding Author(s): XU Weiqing,Email:xuwq@jlu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Weiqing XU,Shuping XU,Yu LIU, et al. Surface-enhanced Raman scattering (SERS) based on surface plasmon resonance coupling techniques[J]. Front Chem Chin, 2011, 6(4): 341-354.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0258-1
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/341
Fig.1  Interaction of a plane wave in a stratified medium system
Fig.2  The four possible ways to measure Raman scattering using a Kretschmann prism. Reprinted with permission from Ref. []. Copyright? 1988 American Chemical Society
Fig.3  (a) ATR-SPR/SERS optical setup with gold nanoparticle enhancement; (b) Photograph of ATR-SPR/SERS device. Reprinted with permission from Ref. []. Copyright? 2004 SPIE
Fig.4  The schematic diagram of SPR-SERS microspectrometer. Reprinted with permission from Ref. []. Copyright 2010 American Institute of Physics
Fig.5  The schematic diagram of SERS spectroscopies based on (a) propagating SP excitation, (b) localized and propagating SP co-enhancement, and (c) long-range SP excitation
Fig.6  (a) The incident angle-dependent SERS spectra of 4-ATP. The integration time of all SERS spectra was 10 s and the laser power was 8 mW. (b) The SERS peak intensities of the 4-ATP at 1435 (○), 1141 (□), and 1077 cm (◇) are plotted with the incident angles. The SPR curve was recorded as the interval of 0.02°. Reprinted with permission from Ref. []. Copyright? 2010 American Institute of Physics
Fig.7  The schematic diagram of the SP-enhanced SERS based on (a) the evanescent field excitation and (b) bright field excitation. (c) The SERS spectra excited via the evanescent field and bright field. The incident angle was 44°.
Fig.8  (a) Curve A and A-1 are the SPR curve and SERS intensity profile of 4-Mpy on a vacuum-deposited silver film. Curve B and B-1 are the SPR curve and SERS intensity profile of 4-Mpy under the LSP-PSP co-enhancement. (b) The strongest SERS spectra of 4- Mpy on a silver film and a sandwich structure excited under the resonance condition. Reprinted with permission from Ref. []. Copyright? 2011 Royal Society of Chemistry
Fig.9  (a) A comparison of the angular reflectivity scans recorded on a normal SPR configuration and a LRSPR configuration. The angle-dependent SP field-enhanced SERS intensities under a SPR configuration (○) and a LRSPR configuration (◇) were also shown. (b) The SERS spectra excited by the LRSPs at the resonance angles of 65.4° (top curve) and the SPs at the resonance angles of 72° (bottom curve). Reprinted with permission from Ref. []. Copyright? 2011 American Chemical Society
Fig.10  Schematic light scattering configuration in ATR-SPP resonance with the weierstrass prism. Reprinted with permission from Ref. []. Copyright ?1995 American Chemical Society
Fig.11  Schematics of the optical setup for combined SPR-SERS in a backscattering configuration. Reprinted with permission from Ref. []. Copyright ?2011 American Chemical Society
Fig.12  The design of the directional SERS based on back coupled radiation mode
Fig.13  Optical input scheme for TIR excitation of the localized plasmon at the nanoparticle array/air interface. Reprinted with permission from Ref. []. Copyright ?2005 American Chemical Society
Fig.14  Scheme of the remote SERS measurement using a quasi-one-dimensional ribbon dielectric waveguide, where A and B stand for the point that laser radiates on the edge of ribbon belt and collection point of SERS, and the red and brown arrows stands for the incident and scattering and collection SERS signal, respectively. Reprinted with permission from Ref. []. Copyright ?2011 Springer Science+ Business Media
Fig.15  Schematic diagram of an SERS-active optical fiber. Reprinted with permission from Ref. []. Copyright ?2008 American Chemical Society
Fig.16  Schematic of the Raman probe with a D-shaped (or side-polished) fiber coated with SERS substrate on the flat surface. Reprinted with permission from Ref. []. Copyright ?2005 American Institute of Physics
Fig.17  Configuration of SERS-active light waveguide applied to the SERS detection of a sample in a small volume of low refractive index liquid. Reprinted with permission from Ref. []. Copyright ?2004 Optical Society of America
Fig.18  (a) Schematic of the experimental setup. (b) SEM image taken from the side surface of the silica core. Reprinted with permission from Ref. []. Copyright ?2008 Optical Society of America
Fig.19  (a) A proposed wo-dimensional SERS grating structure and its spectral properties; (b) Absorption spectra for various periods from 426 to 546 nm with a 24 nm increment; (c) absorption peak positions versus different periods for LSPs (circles) and SPPs (squares), with corresponding maximum local || at resonance wavelength of SPPs (triangles). The silver film thickness was 40 nm, the bump height was 100 nm and the environment is water. Reprinted with permission from Ref. []. Copyright ?2010 Optical Society of America
Fig.20  (a) An AFM image of biharmonic metal surface with the grating components of 500 and 250 nm. First periodicity was designed to excite the SPs. Second one generated backscattering for PSPs with a photonic band gap. (b) Resonance absorption spectra of biharmonic metal gratings with different grating strengths; (c) Corresponding SERS spectra for each resonance condition. Reprinted with permission from Ref. []. Copyright ?2008 Optical Society of America
Fig.21  Schematic metal nanostructured plasmonic crystals (b) schematic SERS process; light is coupled into a plasmon, which then interacts with and is Raman scattered by a molecule on the surface, and the outgoing plasmon is then scattered back into a photon. Emitted far-field Raman images deduced from the measured plasmonic nanovoid extinction for (a) propagating and (b) localized plasmons. Reprinted with permission from Ref. []. Copyright ?2005 American Chemical Society
1 Fleischmann, M.; Hendra, P. J.; McQuilla, A. J., Chem. Phys. Lett. 1974, 26, 163-166
doi: 10.1016/0009-2614(74)85388-1
2 Chang, R. K.; Furtak, T. E., eds., Surface-Enhanced Raman Scattering, Plenum Press, New York, 1982.
3 Jeanmaire, D. L.; Van Duyne, P. R., J. Electroanal. Chem. 1977, 84, 1-20
doi: 10.1016/S0022-0728(77)80224-6
4 Kerker, M., ed., Selected Papers on Surface-Enhanced Raman Scattering, SPIE, Bellingham, WA, 1990.
5 Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Chem. Rev. 1999, 99, 2957-2976
doi: 10.1021/cr980133r pmid:11749507
6 Schatz, G. C.; Van Duyne, P. R., Handbook of Vibrational Spectroscopy Vol. 1: Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, Chalmers, J. M., Griffiths, P. R., (Eds); John Wiley & Sons Ltd., Chichester, U.K .,2002, pp759-774
7 Kneipp, K.; Moskovits, M.; Kneipp, H., eds., Surface-Enhanced Raman Scattering- Physics and Applications, Springer, Heidelberg and Berlin, 2006
8 Graham, D.; Goodacre, R., Chem. Soc. Rev. 2008, 37, 883-884
doi: 10.1039/b804297g pmid:18443673
9 Aroca, R., ed., Surface-Enhanced Vibrational Spectroscopy, John Wiley & Sons Ltd., Chichester, UK, 2006, pp. 141-176
10 Nie, S.; Emory, S. R., Science 1997, 275, 1102-1106
doi: 10.1126/science.275.5303.1102 pmid:9027306
11 Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Ltzkan, I.; Dasari, R. R.; Feld, M. S., Phys. Rev. Lett. 1997, 78, 1667-1670
doi: 10.1103/PhysRevLett.78.1667
12 Xu, H. X.; Bjerneld, E. J.; K?ll, M.; B?rjesson, L., Phys. Rev. Lett. 1999, 83, 4357-4360
doi: 10.1103/PhysRevLett.83.4357
13 Ekgasit, S.; Thammacharoen, C.; Yu, F.; Knoll, W., Anal. Chem. 2004, 76, 2210-2219
doi: 10.1021/ac035326f pmid:15080730
14 Brolo, A. G.; Kwok, S. C.; Moffitt, M. G.; Gordon, R.; Riordon, J.; Kavanagh, K. L., J. Am. Chem. Soc. 2005, 127, 14936-14941
doi: 10.1021/ja0548687 pmid:16231950
15 Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Analyst (Lond.) 2008, 133, 1308-1346
doi: 10.1039/b802918k
16 Hatta, A.; Ohshima, T.; Suetaka, W., Appl. Phys., A Mater. Sci. Process. 1982, 29, 71-75
doi: 10.1007/BF00632429
17 Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A., Nature 1998, 391, 667-669
doi: 10.1038/35570
18 Xu, H. X.; Aizpurua, J.; K?ll, M.; Apell, P., Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 2000, 62, 4318-4324
doi: 10.1103/PhysRevE.62.4318 pmid:11088961
19 Johansson, P.; Xu, H. X.; K?ll, M., Phys. Rev. B 2005, 72, 035427
doi: 10.1103/PhysRevB.72.035427
20 Moskovits, M., Rev. Mod. Phys. 1985, 57, 783-826
doi: 10.1103/RevModPhys.57.783
21 Schatz, G. C.; Young, M. A.; Van Duyne, R. P., Topics in Applied Physics 103, 19-45
doi: 10.1007/3-540-33567-6_2
22 Yoshida, K.; Itoh, T.; Tamaru, H.; Biju, V.; Ishikawa, M.; Ozaki, Y., Phys. Rev. B 2010, 81, 115406
doi: 10.1103/PhysRevB.81.115406
23 Itoh, T.; Hashimoto, K.; Ikehata, A.; Ozaki, Y., Appl. Phys. Lett. 2003, 83, 5557-5559
doi: 10.1063/1.1637442
24 Itoh, T.; Hashimoto, K.; Ozaki, Y., Appl. Phys. Lett. 2003, 83, 2274-2276
doi: 10.1063/1.1604188
25 McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P., J. Phys. Chem. B 2005, 109, 11279-11285
doi: 10.1021/jp050508u pmid:16852377
26 Bouhelier, A.; Wiederrecht, G. P., Opt. Lett. 2005, 30, 884-886
doi: 10.1364/OL.30.000884 pmid:15865387
27 Shegai, T.; Brian, B.; Miljkovi?, V. D.; K?ll, M., ACS Nano 2011, 5, 2036-2041
doi: 10.1021/nn1031406 pmid:21323329
28 Kosemura, D.; Ogura, A., Appl. Phys. Lett. 2010, 96, 212106
doi: 10.1063/1.3441042
29 Hayazawa, N.; Saito, Y.; Kawata, S., Appl. Phys. Lett. 2004, 85, 6239
doi: 10.1063/1.1839646
30 Ren, B.; Picardi, G.; Pettinger, B.; Schuster, R.; Ertl, G., Angew. Chem. Int. Ed. 2005, 44, 139-142
doi: 10.1002/anie.200460656
31 Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X.; Ren, B.; Tian, Z. Q., Nature Commun. 2011, 2, 305
doi: 10.1038/ncomms1310
32 Hansen, W. N., J. Opt. Soc. Am. 1968, 58, 380-390
doi: 10.1364/JOSA.58.000380
33 Ekgasit, S.; Thammacharoen, C.; Knoll, W., Anal. Chem. 2004, 76, 561-568
doi: 10.1021/ac035042v pmid:14750847
34 Dornhaus, R.; Benner, R. E.; Chang, R. K.; Chabay, I., Surf. Sci. 1980, 101, 367-373
doi: 10.1016/0039-6028(80)90632-9
35 Giergiel, J.; Reed, C. E.; Hemminger, J. C.; Ushioda, S., J. Phys. Chem. 1988, 92, 5357-5365
doi: 10.1021/j100330a009
36 Yih, J. N.; Chen, S. J.; Huang, K. T.; Su, Y. T.; Lin, G. Y., Proc. SPIE 2004, 5327, 5-9
doi: 10.1117/12.530246
37 Liu, Y.; Xu, S. P.; Tang, B.; Wang, Y.; Zhou, J.; Zheng, X. L.; Zhao, B.; Xu, W. Q., Rev. Sci. Instrum. 2010, 81, 036105
doi: 10.1063/1.3321313 pmid:20370228
38 Hu, W. P.; Chen, S. J.; Yih, J. N.; Lin, G. Y.; Chang, G. L., Proc. SPIE 2004, 5327, 88-94
doi: 10.1117/12.530593
39 Chiu, K. C.; Yu, L. Y.; Yih, J. N.; Chen, S. J., Proc. SPIE 2007, 6450, 64500R
doi: 10.1117/12.702094
40 Giergiel, J.; Reed, C. E.; Hemminger, J. C.; Ushioda, S., J. Phys. Chem. 1988, 92, 5357-5365
doi: 10.1021/j100330a009
41 Kocabas, A.; Ertas, G.; Senlik, S. S.; Aydinli, A., Opt. Express 2008, 17, 12469-12477
doi: 10.1364/OE.16.012469
42 Zhou, Q.; Li, X. W.; Fan, Q.; Zhang, X. X.; Zheng, J. W., Angew. Chem. Int. Ed. 2006, 45, 3970-3973
43 Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Anal. Chem. 2005, 77, 3261-3266
doi: 10.1021/ac048176x pmid:15889917
44 Daniels, J. K.; Chumanov, G., J. Phys. Chem. B 2005, 109, 17936-17942
doi: 10.1021/jp053432a pmid:16853302
45 Kim, K.; Yoon, J. K., J. Phys. Chem. B 2005, 109, 20731-20736
doi: 10.1021/jp052829b pmid:16853687
46 Liu, Y.; Xu, S. P.; Li, H. B.; Jian, X. G.; Xu, W. Q., Chem. Commun. (Camb.) 2011, 47, 3784-3786
doi: 10.1039/c0cc04988c pmid:21298134
47 Sarid, D., Phys. Rev. Lett. 1981, 47, 1927-1930
doi: 10.1103/PhysRevLett.47.1927
48 Craig, A. E.; Olson, G. A.; Sarid, D., Opt. Lett. 1983, 8, 380-382
doi: 10.1364/OL.8.000380 pmid:19718121
49 Matsubara, K.; Kawata, S.; Minami, S., Opt. Lett. 1990, 15, 75-77
doi: 10.1364/OL.15.000075 pmid:19759716
50 Yang, F.; Bradberry, G. W.; Sambles, J. R., Phys. Rev. Lett. 1991, 66, 2030-2032
doi: 10.1103/PhysRevLett.66.2030 pmid:10043372
51 Kessler, M. A.; Hall, E. A. H., Thin Solid Films 1996, 272, 161-169
doi: 10.1016/0040-6090(95)08009-0
52 Lyndin, N. M.; Salakhutdinov, I. F.; Sychugov, V. A.; Usievich, B. A.; Pudonin, F. A.; Parriaux, O., Sens. Actuators B Chem. 1999, 54, 37-42
doi: 10.1016/S0925-4005(98)00324-4
53 Toyama, S.; Doumae, N.; Shoji, A.; Ikariyama, Y., Sens. Actuators B Chem. 2000, 65, 32-34
doi: 10.1016/S0925-4005(99)00427-X
54 Nenninger, G. G.; Tobiska, P.; Homola, J.; Yee, S. S., Sens. Actuators B Chem. 2001, 74, 145-151
doi: 10.1016/S0925-4005(00)00724-3
55 Liu, Y.; Xu, S. P.; Xuan, X. Y.; Zhao, B.; Xu, W. Q., J. Phys. Chem. Lett 2011, 2, 2218-2222
doi: 10.1021/jz200963x
56 Futamata, M., Appl. Opt. 1997, 36, 364-375
doi: 10.1364/AO.36.000364 pmid:18250683
57 Futamata, M.; Borthen, P.; Thomassen, J.; Schumacher, D.; Otto, A., Appl. Spectrosc. 1994, 48, 252-260
doi: 10.1366/0003702944028524
58 Futamata, M., Langmuir 1995, 11, 3894-3901
doi: 10.1021/la00010a046
59 Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G., Anal. Chem. 2011, 83, 2337-2344
doi: 10.1021/ac103273r pmid:21322587
60 Itoh, T.; Yoshida, K.; Biju, V.; Kikkawa, Y.; Ishikawa, M.; Ozaki, Y., Phys. Rev. B 2007, 76, 085405
doi: 10.1103/PhysRevB.76.085405
61 Laurent, G.; Félidj, N.; Truong, S. L.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., Nano Lett. 2005, 5, 253-258
doi: 10.1021/nl048234u pmid:15794606
62 Dong, B.; Zhang, W.; Li, Z. P.; Sun, M. T., Plasmonics 2011, 6, 189-193
doi: 10.1007/s11468-010-9186-z
63 Xu, W. Q.; Xu, S. P.; Hu, B.; Wang, K. X.; Zhao, B.; Xie, Y. T.; Fan, Y. G., Chem. Res. Chin. Univ. 2004, 1, 144-147
64 Mullen, K. I.; Carron, K. T., Anal. Chem. 1991, 63, 2196-2199
doi: 10.1021/ac00019a023
65 Viets, C.; Hill, W., Sens. Actuators B Chem. 1998, 51, 92-99 .
doi: 10.1016/S0925-4005(98)00170-1
66 Stokes, D. L.; Chi, Z.; Vo-Dinh, T., Appl. Spectrosc. 2004, 58, 292-298
doi: 10.1366/000370204322886636 pmid:15035709
67 Polwart, E.; Keir, R. L.; Davidson, C. M.; Smith, W. E.; Sadler, D. A., Appl. Spectrosc. 2000, 54, 522-527
doi: 10.1366/0003702001949690
68 Zheng, X. L.; Guo, D. W.; Shao, Y. L.; Jia, S. J.; Xu, S. P.; Zhao, B.; Xu, W. Q.; Corredor, C.; Lombardi, J. R., Langmuir 2008, 24, 4394-4398
doi: 10.1021/la703993j
69 Smythe, E. J.; Dickey, M. D.; Bao, J.; Whitesides, G. M.; Capasso, F., Nano Lett. 2009, 9, 1132-1138
doi: 10.1021/nl803668u pmid:19236032
70 Tian, M.; Lu, P.; Schülzgen, A.; Peyghambarian, N.; Liu, D., Opt. Commun. 2011, 284, 2061-2064
doi: 10.1016/j.optcom.2010.12.038
71 Lucotti, A.; Zerbi, G., Sens. Actuators B Chem. 2007, 121, 356-364
doi: 10.1016/j.snb.2006.03.050
72 Kostrewa, S.; Hill, W.; Klockow, D., Sens. Actuators B Chem. 1998, 51, 292-297
doi: 10.1016/S0925-4005(98)00230-5
73 Viets, C.; Hill, W., J. Raman. Spectrosc. 2000, 31, 625-631
doi: 10.1002/1097-4555(200007)31:7<625::AID-JRS589>3.0.CO;2-T
74 Zhang, Y.; Gu, C.; Schwartzberg, A. M.; Zhang, J. Z., Appl. Phys. Lett. 2005, 87, 123105
doi: 10.1063/1.2051799
75 Xu, W. Q.; Xu, S. P.; Lu, Z. C.; Chen, L.; Zhao, B.; Ozaki, Y., Appl. Spectrosc . 2004, 58, 414-419
doi: 10.1366/000370204773580257
76 Yan, H.; Gu, C.; Yang, C. X.; Liu, J.; Jin, G. F.; Zhang, J. T.; Hou, L. T.; Yao, Y., Appl. Phys. Lett. 2006, 89, 204101
doi: 10.1063/1.2388937
77 Amezcua-Correa, A.; Yang, J.; Finlayson, C. E.; Peacock, A. C.; Hayes, J. R.; Sazio, P. J. A.; Baumberg, J. J.; Howdle, S. M., Adv. Funct. Mater. 2007, 17, 2024-2030
doi: 10.1002/adfm.200601125
78 Yan, H.; Liu, J.; Yang, C. X.; Jin, G. F.; Gu, C.; Hou, L. T., Opt. Express 2008, 16, 8300-8305
doi: 10.1364/OE.16.008300
79 Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Russell, A. E., Nano Lett. 2005, 5, 2262-2267
doi: 10.1021/nl051618f
80 Sanda, P. N.; Warlaumont, J. M.; Demuth, J. E.; Tsang, J. C.; Christmann, K.; Bradley, J. A., Phys. Rev. Lett. 1980, 45, 1519-1523
doi: 10.1103/PhysRevLett.45.1519
81 Otto, A., Appl. Surf. Sci. 1980, 6, 309-355
doi: 10.1016/0378-5963(80)90020-3
82 Liao, P. F.; Bergman, J. G.; Chemla, D. S.; Wokaun, A.; Melagailis, J.; Hawryluk, A. M.; Economou, N. P., Chem. Phys. Lett. 1981, 82, 355-359
doi: 10.1016/0009-2614(81)85172-X
83 Kahl, M.; Voges, E., Phys. Rev. B 2000, 61, 14078-14088
doi: 10.1103/PhysRevB.61.14078
84 Du, L.; Zhang, X.; Mei, T.; Yuan, X., Opt. Express 2010, 18, 1959-1965
doi: 10.1364/OE.18.001959 pmid:20174025
85 Kocabas, A.; Ertas, G.; Senlik, S. S.; Aydinli, A., Opt. Express 2008, 16, 12469-12477
doi: 10.1364/OE.16.012469 pmid:18711483
86 Chan, C. Y.; Xu, J. B.; Waye, M. Y.; Ong, H. C., Appl. Phys. Lett. 2010, 96, 033104
doi: 10.1063/1.3291109
87 Hu, W. F.; Zou, S. L., J. Phys. Chem. C 2011, 115, 4523-4532
doi: 10.1021/jp1110373
88 Bouhelier, A.; Wiederrecht, G. P., Opt. Lett. 2005, , 30, 884-886
doi: 10.1364/OL.30.000884 pmid:15865387
89 Dantham, V. R.; Bisht, P. B.; Namboodiri, C. K. R., J. Appl. Phys. 2011, 109, 103103
doi: 10.1063/1.3590156
[1] HE Yaning, LIU Bin, REN Hongfeng, WANG Xiaogong. Polyimide liquid crystal alignment layers prepared by soft-Lithography[J]. Front. Chem. China, 2007, 2(3): 318-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed