Theoretical studies on electronic spectroscopy
and dynamics with the real-time time-dependent density functional
theory
Jie LIU1,Zhenyu GUO1,Jin SUN1,Wanzhen LIANG1, 2,
1.Hefei National Laboratory
for Physical Science at Microscale and Department of Chemical Physics,
University of Science and Technology of China, Hefei 230026, China; 2.2010-03-15 9:35:15;
Abstract Time-dependent density functional theory (TDDFT) has evolved into a general routine to extract the energies of low-lying excited states over the last decades. Driven by the remarkable progress of laser technology, the study of the interaction between matter and intense laser fields with ultrashort pulse duration develops rapidly. A great number of new strong field phenomena emerge. The requirement of a theoretical tool to study the intense field phenomena and dynamical processes of polyatomic systems is urgent. To extend the power of the TDDFT beyond the linear responses, an alternative scheme has been developed by numerically solving the time-dependent Kohn-Sham equations directly in real-time domain. In this article, we summarize the algorithms and capabilities of the real-time TDDFT on studying electron spectroscopy and dynamics of polyatomic systems. The failure of TDDFT with the adiabatic local-density approximation on some dynamical processes and the possible solutions are synopsized as well. The numerical implementation of algorithms and applications of RT-TDDFT on the linear and nonlinear spectroscopies and electronic dynamics of nano-size nonmetal clusters are displayed.
管理员,Jie LIU,Jin SUN, et al. Theoretical studies on electronic spectroscopy
and dynamics with the real-time time-dependent density functional
theory[J]. Front. Chem. China,
2010, 5(1): 11-28.
Nuroh, K.; Sott, M. J.; Zaremba, E., Phys. Rev. Lett. 1982, 49, 862―866
Mahan, G. D., J. Chem. Phys. 1982, 76, 493―497
Baroni, S.; Giannozzi, P.; Testa, A., Phys. Rev. Lett. 1987, 58, 1861―1864
Levine Z. H.; Allan, D. C., Phys. Rev. Lett. 1989, 63, 1719―1722
Yabana, K.; Bertsch, G. F., Phys. Rev. B1996, 54, 4484―4487
Rubio, A.; Alonso, J. A.; Blase, X.; Balbas, L. C.; Louie, S. G., Phys. Rev. Lett. 1996, 77, 247―250
van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J., Phys. Rev. Lett. 1997, 78, 3097―3100
Shukla, M. K.; Leszczynski, J., J. Phys. Chem. A2004, 108, 10367―10375
Rogers, J. E.; Nguyen, K. A.; Hufnagle D. C.; McLean, D. G.; Su, W. J.; Gossett, M.; Burke, A. R.; Vinogradov, S. A.; et al., J. Phys. Chem. A, 2003, 107, 11331―11339
Furche, F.; Ahlrichs, R., J. Chem. Phys. 2002, 117, 7433―7447
Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V., J. Chem. Phys. 2006, 124, 094107
Krausz, F.; Ivanov, M., Rev. Mod. Phys. 2009, 81, 163―234
Agostini, P.; Fabre, F.; Mainfray, G.; Petite, G.; Rahman, N. K., Phys. Rev. Lett. 1979, 42, 1127―1130
Ferray, M.; L'Huillier, A.; Li, X. F.; Lempre, L. A.; Mainfray, G.; Manus, C., J. Phys. B1988, 21, L31―L35
Jahnke, T.; Czasch, A.; Schöffler, M. S.; Schössler, S.; Knapp, A.; Kösz, M.; Titze, J.; Wimmer, C.; et al., Phys. Rev. Lett. 2004, 93, 163401
Bucksbaum, P. H., Science2007, 317, 766―769
Goulielmkis, E.; Yakovlev, V. S.; Cavalieri, A. L.; Uiberacker, M.; Pervak, V.; Apolonski, A.; Kienberger, R.; Kleineberg, U.; et al., Science2007, 317, 769―775
Watanabe, N.; Tsukada, M., Phys. Rev. E2002, 65, 036705
Liang, W. Z.; Baer, R.; Saravanan, C.; Shao, Y. H.; Bell, A. T.; Head-Gordon, M., J. Comp. Phys. 2004, 194, 575―587
Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J., J. Chem. Phys. 2001, 115, 10291―1030
Liang, W. Z.; Yokojima, S.; Chen, G. H., J. Chem. Phys. 2000, 113, 1403―1408
Mitas, L.; Therrien, J.; Twesten, R.; Belomoin, G.; Nayfeh, M. H., Appl. Phys. Lett. 2001, 78, 1918―1920
Wadt, W. R.; Hay, P. J., J. Chem. Phys. 1985, 82, 284―298
Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; et al., Phys. Chem. Chem. Phys. 2006, 8, 3172―3191
Jackson, J. D. Classical Electrodynamics 2nd Ed.; Wiley-VCH: New York, 1975