Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci Chin    2009, Vol. 3 Issue (1) : 92-100    https://doi.org/10.1007/s11704-007-0011-9
RESEARCH ARTICLE
Integrated biological systems modeling: challenges and opportunities
Jialiang WU1, Eberhard VOIT2,3()
1. Department of Mathematics, Bioinformatics Program, Georgia Institute of Technology, Atlanta, GA 0332, USA; 2. Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; 3. The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, tlanta, GA 30332, USA
 Download: PDF(693 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most biological systems are by nature hybrids consist of interacting discrete and continuous components, which may even operate on different time scales. Therefore, it is desirable to establish modeling frameworks that are capable of combining deterministic and stochastic, discrete and continuous, as well as multi-timescale features. In the context of molecular systems biology, an example for the need of such a combination is the investigation of integrated biological pathways that contain gene regulatory, metabolic and signaling components, which may operate on different time scales and involve on-off switches as well as stochastic effects. The implementation of integrated hybrid systems is not trivial because most software is limited to one or the other of the dichotomies above. In this study, we first review the motivation for hybrid modeling. Secondly, by using the example of a toggle switch model, we illustrate a recently developed modeling framework that is based on the combination of biochemical systems theory (BST) and hybrid functional Petri nets (HFPN). Finally, we discuss remaining challenges and future opportunities.

Keywords biochemical systems theory      Petri net      hybrid modeling      hybrid functional Petri net      toggle switch      canonical modeling      stochastic delay     
Corresponding Author(s): VOIT Eberhard,Email:gtg337v@mail.gatech. edu, eberhard. voit@bme.gatech.edu   
Issue Date: 05 March 2009
 Cite this article:   
Jialiang WU,Eberhard VOIT. Integrated biological systems modeling: challenges and opportunities[J]. Front Comput Sci Chin, 2009, 3(1): 92-100.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-007-0011-9
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I1/92
1 Savageau M A. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology , 1969, 25(3): 365-369
doi: 10.1016/S0022-5193(69)80026-3
2 Savageau M A. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology , 1969, 25(3): 370-379
doi: 10.1016/S0022-5193(69)80027-5
3 Savageau M A. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Reading: Addison-Wesley, 1976
4 Voit E O. Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge: Cambridge University Press, 2000
5 Torres N V, Voit E O. Pathway Analysis and Optimization inMetabolic Engineering. Cambridge: Cambridge University Press, 2002
6 Kacser H, Burns J A. The control of flux. Symp. Soc. Exp. Biol ., 1973, 27: 65-104
7 Heinrich R, Rapoport T A. A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. European Journal of Biochemistry , 1974, 42: 89-95
doi: 10.1111/j.1432-1033.1974.tb03318.x
8 Fell D A. Understanding the Control of Metabolism. London: Portland Press, 1997
9 Hatzimanikatis V, Bailey J. MCA has more to say. Journal of Theoretical Biology , 1996, 182: 233-242
doi: 10.1006/jtbi.1996.0160
10 Visser D, Heijnen J J. The mathematics of metabolic control analysis revisited. Metabolic Engineering , 2002, 4(2): 114-123
doi: 10.1006/mben.2001.0216
11 Wang F-S, Ko C-L, . Kinetic modeling using S-systems and linlog approaches. Biochemical Engineering Journal , 2007, 33: 238-247
doi: 10.1016/j.bej.2006.11.002
12 Goss P J E, Peccoud J. Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. In: Proceedings of the National Academy of Sciences , 1998, 95: 6750-6755
doi: 10.1073/pnas.95.12.6750
13 Haas P J. Stochastic Petri Nets. New York: Springer-Verlag, 2002
14 D’Argenio P R, Katoen J-P. A theory of stochastic systems part I: Stochastic automata. Information and Computation , 2005, 203(1): 1-38
doi: 10.1016/j.ic.2005.07.001
15 Gillespie D T. A rigorous derivation of the chemical master equation. Physica A , 1992, 188: 404-425
doi: 10.1016/0378-4371(92)90283-V
16 Gillespie D T. Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry , 2007, 58(1): 35-55
doi: 10.1146/annurev.physchem.58.032806.104637
17 Matsuno H, Tanaka Y, . Biopathways representation and simulation on hybrid functional Petri net. In Silico Biology , 2003, 3: 389-404
18 Wu J, Voit E O. Hybrid modeling in biochemical systems theory by means of functional Petri nets. Journal of Bioinformatics and Computational Biology , 2009 (in press)
doi: 10.1142/S0219720009004047
19 Elowitz M B, Levine A J, . Stochastic gene expression in a single cell. Science , 2002, 297(5584): 1183-1186
doi: 10.1126/science.1070919
20 Blake W J, Kaern M, . Noise in eukaryotic gene expression. Nature , 2003, 422(6932): 633-637
doi: 10.1038/nature01546
21 McAdams H H, Arkin A P. Stochastic mechanisms in gene expression. In: Proceedings of National Academy of Sciences , 1997, 94: 814-819
doi: 10.1073/pnas.94.3.814
22 Schnell S, Turner T E. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Progress in Biophysics and Molecular Biology , 2004, 85: 235-260
doi: 10.1016/j.pbiomolbio.2004.01.012
23 Minton A P. Molecular crowding and molecular recognition. Journal Molecular Recognition , 1993, 6: 211-214
doi: 10.1002/jmr.300060410
24 Minton A P. Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol . 1998, 295: 127-149
doi: 10.1016/S0076-6879(98)95038-8
25 Luby-Phelps K, Castle P E, . Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. In: Proceedings of National Academy of Sciences , 1987, 84: 4910-4913
doi: 10.1073/pnas.84.14.4910
26 Scalettar B A, Abney J R, . Dynamics, structure, and functions are coupled in the mitrocondrial matrix. In: Proceedings of National Academy of Sciences , 1991, 88: 8057-8061
doi: 10.1073/pnas.88.18.8057
27 Verkman A S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends in Biochemical Science , 2002, 27: 27-33
doi: 10.1016/S0968-0004(01)02003-5
28 Clegg J S. Properties and metabolism of the aqueous cytoplasm and its boundaries. American Journal Physiology , 1984, 246: R133-R151
29 Srere P, Jones M E, Matthews C K, eds. Structural and Organizational Aspects of Metabolic Regulation. New York: Alan R. Liss, 1989
30 Gillespie D T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computation Physics , 1976, 22: 403-434
doi: 10.1016/0021-9991(76)90041-3
31 Qian H, Elson E L. Single-molecule enzymology: stochastic Michaelis-Menten kinetics. Biophysical Chemistry , 2002, 101-102: 565-576
doi: 10.1016/S0301-4622(02)00145-X
32 Kuthan H. Self-organisation and orderly processes by individual protein complexes in the bacterial cell. Progress in Biophysics andMolecular Biology , 2001, 75: 1-17
33 Hirata H, Yoshiura S, . Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science , 2002, 298(5594): 840-843
doi: 10.1126/science.1074560
34 Monk N A. Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Current Biology , 2003, 13(16): 1409-1413
doi: 10.1016/S0960-9822(03)00494-9
35 Tian T, Burrage K, . Stochastic delay differential equations for genetic regulatory networks. The Journal of Computational and Applied Mathematics , 2007, 205(2): 696-707
doi: 10.1016/j.cam.2006.02.063
36 Kiehl T R, Mattheyses R M, . Hybrid simulation of cellular behavior. Bioinformatics , 2004, 20(3): 316-322
doi: 10.1093/bioinformatics/btg409
37 Mocek W T, Rudnicki R, . Approximation of delays in biochemical systems. Mathematical Biosciences , 2005, 198(2): 190-216
doi: 10.1016/j.mbs.2005.08.001
38 Miyano S. Cell Illustrator website. http://www.cellillustrator.com /, 2008
39 Gardner T S, Cantor C R, . Construction of a genetic toggle switch in Escherichiacoli. Nature , 2000, 403: 339-342
doi: 10.1038/35002131
40 Tian T, Burrage K. Stochastic models for regulatory networks of the genetic toggle switch. In: Proceedings of the National Academy of Sciences , 2006, 103(22): 8372-8377
doi: 10.1073/pnas.0507818103
41 Savageau M A, Voit E O. Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical Biosciences , 1987, 87(1): 31-113
doi: 10.1016/0025-5564(87)90035-6
42 Voit E O. Smooth bistable S-systems. In: Proceedings of IEEE Systems Biology , 2005, 152: 207-213
doi: 10.1049/ip-syb:20050063
43 Clarke E M, Grumberg O, . Model Checking. Cambridge: MIT Press, 1999
44 Nagasaki M, Yamaguchi R, . Genomic data assimilation for estimating hybrid functional Petri net from time-course gene expression data. Genome Informatics , 2006, 17(1): 46-61
45 Neapolitan R E. Learning Bayesian Networks. Prentice Hall , 2003
46 Jiang X, Cheng D C, . A novel parameter decomposition approach to faithful fitting of quadric surfaces. Pattern Recognition: 27th DAGM Symposium , LNCS, 2005, 3663: 168-175
47 Williams B C, Millar W. Decompositional, Model-based learning and its Analogy to Diagnosis. AAAI/IAAI , 1998
48 Koh G, Teong H, . A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics , 2006, 22(14): e271-280
doi: 10.1093/bioinformatics/btl264
49 Alves R, Savageau MA. Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics , 2000, 16(9): 786-798
doi: 10.1093/bioinformatics/16.9.786
[1] Bailing LIU,Yanhui LI,Bing ZENG,Chao LEI. An efficient trust negotiation strategy towards the resource-limited mobile commerce environment[J]. Front. Comput. Sci., 2016, 10(3): 543-558.
[2] Yuyue DU,Yuhui NING. Property analysis of logic Petri nets by marking reachability graphs[J]. Front. Comput. Sci., 2014, 8(4): 684-692.
[3] WANG Yuanzhuo, LIN Chuang, YANG Yang, SHAN Zhiguang. Performance analysis of a dependable scheduling strategy based on a fault-tolerant grid model[J]. Front. Comput. Sci., 2007, 1(3): 329-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed