Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2008, Vol. 2 Issue (3) : 268-294    https://doi.org/10.1007/s11704-008-0012-0
Status of pattern recognition with wavelet analysis
Tang Yuanyan
College of Computer Science, Chongqing University; Department of Computer Science, Hong Kong Baptist University;
 Download: PDF(1225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Pattern recognition has become one of the fastest growing research topics in the fields of computer science and electrical and electronic engineering in the recent years. Advanced research and development in pattern recognition have found numerous applications in such areas as artificial intelligence, information security, biometrics, military science and technology, finance and economics, weather forecast, image processing, communication, biomedical engineering, document processing, robot vision, transportation, and endless other areas, with many encouraging results. The achievement of pattern recognition is most likely to benefit from some new developments of theoretical mathematics including wavelet analysis. This paper aims at a brief survey of pattern recognition with the wavelet theory. It contains the following respects: analysis and detection of singularities with wavelets; wavelet descriptors for shapes of the objects; invariant representation of patterns; handwritten and printed character recognition; texture analysis and classification; image indexing and retrieval; classification and clustering; document analysis with wavelets; iris pattern recognition; face recognition using wavelet transform; hand gestures classification; character processing with B-spline wavelet transform; wavelet-based image fusion, and others.
Issue Date: 05 September 2008
 Cite this article:   
Tang Yuanyan. Status of pattern recognition with wavelet analysis[J]. Front. Comput. Sci., 2008, 2(3): 268-294.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-008-0012-0
https://academic.hep.com.cn/fcs/EN/Y2008/V2/I3/268
1 Auslander L, Kailath T, Mitter S, eds. Signal Processing I: Signal Processing Theory. New York: Springer-Verlag, 1990
2 Beylkin G, Coifman R, Daubechies I, et al.. Wavelets and their Applications. MA: Jones and Bartlett, 1991
3 Chui C K . An Introduction to Wavelets. Boston: Academic Press, 1992
4 Daubechies I . Wavelettransform, time-frequency localization and signal analysis. IEEE Transactions Information Theory, 1990, 36: 961–1005.
doi:10.1109/18.57199
5 Grossmann A, Morlet J . Decomposition of hardy functioninto square integrable wavelets of constant shape. SIAM J. Math. Anal., 1984, 15: 723–736.
doi:10.1137/0515056
6 IEEE. Special issueon wavelets and signal processing. IEEETransactions on Signal Processing, 1993, 41(12): 3213–3600
7 Mallat S . Atheory of multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1989, 11: 674–693.
doi:10.1109/34.192463
8 Meyer Y . Ondeletteset Fonctions Splines: Seminaire EDP. EcolePolytechnique, Paris, 1986
9 SPIE. Special issueon wavelet applications. In: Harold H.Szu, editor, Proceedings of SPIE 2242, 1994
10 Chen C H, Lee J S, Sun Y N . Wavelet transformation for gray-level corner detection. Pattern Recognition, 1995, 28(6): 853–861.
doi:10.1016/0031‐3203(94)00169‐M
11 Chen G, Yang Y H, Edge detection by regularizedcubic B-spline fitting. IEEE Transactionson Systems, Man and Cybernetics, April, 1995, 25(4): 636–643.
doi:10.1109/21.370194
12 Chuang G C H, Kuo C C J . Wavelet descriptor of planarcurves: theory and applications”. IEEE Transactions Image Processing, 1996, 5(1): 56–70.
doi:10.1109/83.481671
13 Deng W A, Lyengar S S . A new probability relaxationscheme and its application to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 432–443.
doi:10.1109/34.491624
14 Law T, Iton H, Seki H . Image filtering, edge detection, and edge tracing usingfuzzy reasoning. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1996, 18(5): 481–491.
doi:10.1109/34.494638
15 Mallat S, Hwang W L . Singularity detection andprocessing with wavelets. IEEE Transactionson Information Theory, 1992, 38: 617–643.
doi:10.1109/18.119727
16 Tang Y Y, Yang L H, Feng L . Contour detection of handwriting by modular-angle-separatedwavelets. In: Proc. of the 6-th Inter.Workshop on Frontiers of Handwriting Recognition (IWFHR-VI), Taejon, Korea, August 1998, 357–366
17 Tang Y Y, Yang L H, Liu J . Wavelet-based edge detection in Chinese document. In: Proc. the 17th Int. Conf. on Computer Processingof Oriental Languages, 1997, volume 1, 333–336
18 Thune M, Olstad B, Thune N . Edge detection in noisy data using finite mixture distributeanalysis. Pattern Recognition, 1997, 30(5): 685–699.
doi:10.1016/S0031‐3203(96)00115‐X
19 Tieng Q M, Boles W W . Recognition of 2D objectcontours using the wavelet transform zero-crossing representation. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1997, 19: 910–916.
doi:10.1109/34.608294
20 Young R K . Wavelet Theory and its Applications. Boston: Kluwer Academic Publishers, 1993
21 Tang Y Y, Li B F, Ma H, et al.. Ring-projection-wavelet-fractal signatures:a novel approach to feature extraction”. IEEE Transactions on Circuits and Systems II, 1998, 45(8): 1130–1134.
doi:10.1109/82.718824
22 Tang Y Y, Liu J M, Ma H, et al.. Wavelet orthonormal decomposition for extractingfeatures in pattern recognition. InternationalJournal of Pattern Recognition and Artificial Intelligence, 1999, 13(6): 803–831.
doi:10.1142/S0218001499000458
23 Tieng Q M, Boles W W . Wavelet-based affine invariantrepresentation: a tool for recognizing planar objects in 3D space. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1997, 19: 846–857.
doi:10.1109/34.608288
24 Wunsch P, Laine A F . Wavelet descriptors for multiresolutionrecognition of handprinted characters. Pattern Recognition, 1995, 28(8): 1237–1249.
doi:10.1016/0031‐3203(95)00001‐G
25 Haley G M, Manjunath B S . Rotation-invariant textureclassification using a complete space-frequency model”. IEEE Transactions on Image Processing, 1999, 8(2): 255–269.
doi:10.1109/83.743859
26 Shen D, Ip Horace H S . Discriminative wavelet shapedescriptors for recognition of 2D pattern. Pattern Recognition, 1999, 32: 151–165.
doi:10.1016/S0031‐3203(98)00137‐X
27 Yoon S H, Kim J H, Alexander W E, et al.. An optimum solution for scale-invariant objectrecognition based on the multi-resolution approximation. Pattern Recognition, 1998, 31: 889–908.
doi:10.1016/S0031‐3203(97)00111‐8
28 Kunte R S, Samuel R D S . Wavelet descriptors for recognitionof basic symbols in printed Kannada text. International Journal of Wavelets, Multiresolution and InformationProcessing, 2007, 5(2): 351–367.
doi:10.1142/S0219691307001793
29 Lee S W, Kim C H, Ma H, et al.. Multiresolution recognition of unconstrainedhandwritten numerals with wavelet transform and multilayer clusterneural network. Pattern Recognition, 1996, 29: 1953–1961.
doi:10.1016/S0031‐3203(96)00053‐2
30 Tang Y Y, Ma H, Li B, et al.. Character recognition based on doubechies wavelet. In: Proceedings of The First Int. Conf. on MultimodelInterface (ICMI'96), Beijing: Tsinghua University Press, 1996, 215–220
31 Van de Wouwer G, Schenuders P, Van Dyck D . Statistical texture characterization from discrete waveletrepresentation. IEEE Transactions on ImageProcessing, 1999, 8: 592–598.
doi:10.1109/83.753747
32 Van de Wouwer G, Scheunders P, Livens S, et al.. Wavelet correlation signatures for color texturecharacterization”. Pattern Recognition, 1999, 32: 443–451.
doi:10.1016/S0031‐3203(98)00035‐1
33 Liang K H, Tjahjadi T . Adaptive scale fixing formultiscale texture segmentation. IEEE Transactionson Image Processing, 2006, 15(1): 249–256.
doi:10.1109/TIP.2005.860340
34 Muneeswaran K, Ganesan L, Arumugam S, et al.. A novel approach combing Gabor wavelet transformsand moments for texture segmentation. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2005, 3(4): 559–572.
doi:10.1142/S0219691305001020
35 Jain P, Merchant S N . Wavelet-based multiresolutionhistogram for fast image retrieval. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2004, 2(1): 59–73.
doi:10.1142/S0219691304000354
36 Ksantini R, Ziou D, Dubeau F, et al.. Image retrieval based on region separation andmultiresolution analysis. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2006, 4(1): 147–175.
doi:10.1142/S0219691306001142
37 Kubo M, Aghbari Z, Makinouchi A . Content-based image retrieval technique using wavelet-basedshift and brightness invariant edge feature. International Journal of Wavelets, Multiresolution and InformationProcessing, 2003, 1(2): 163–178.
doi:10.1142/S0219691303000141
38 Moghaddam H A, Khajoie TT, Rouhi A H, et al.. Wavelet correlogram: a new approach for imageindexing and retrieval. Pattern Recognition., 2005, 38(12): 2506–2518.
doi:10.1016/j.patcog.2005.05.010
39 Special Issue on Digital Library. IEEE Transactions on Pattern Analysis And Machine Intelligence, 18, 1996
40 Smeulders A W M, Worring M, Santini S, et al.. Content-based image retrieval at the end ofearly years”. IEEE Transactions onPattern Analysis and Machine Intelligence, 2000, 22: 1349–13805.
doi:10.1109/34.895972
41 Murtagh F Starck J L . Pattern clustering basedon noise modeling in wavelet space. PatternRecognition, 1998, 31: 847–855.
doi:10.1016/S0031‐3203(97)00115‐5
42 Shankar B U, Meher S K, AChosh. Neuro-wavelet classifier for multispectral remote sensingimages. International Journal of Wavelets,Multiresolution and Information Processing, 2007, 5(4): 589–611.
doi:10.1142/S0219691307001914
43 Tang Y Y, Yang LH, Liu J M, et al.. Wavelet Theory and Its Applications to PatternRecognition. Singapore: World Scientific Publishing Co. Pte, Ltd., 2000
44 Liang K H, Chang F, Tan T M, et al.. Multiresolution hadamard representation andits application to document image analysis. In: Proceedingsof The Second Int. Conf. on Multimodel Interface (ICMI'99), Hong Kong, January 5–7 1999, V1–6
45 Tang Y Y, Liu J, Ma H, et al.. Two-dimensional wavelet transform in documentanalysis. In: Proceedings of The FirstInt. Conf. on Multimodel Interface (ICMI'96). Beijing: Tsinghua University Press, 1996, 274–279
46 Tang Y Y, Ma H, Liu J M, et al.. Multiresolution analysis in extraction of referencelines from documents with graylevel background. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 921–926.
doi:10.1109/34.608296
47 Tang Y Y, Ma H, Xi D H, et al.. Extraction of reference lines from documentwith grey-level background using sub-image of wavelets.In: Proceedings of the 3rd International Conferenceon Document Analysis and Recognition, Montreal, Canada, Oct. 14–16 1995, 571–574
48 Daugman J . Demodulationby complex-valued wavelets for stochastic pattern recognition. International Journal of Wavelets, Multiresolutionand Information Processing, 2003, 1(1): 1–317.
doi:10.1142/S0219691303000025
49 Kouzani A Z, Ong S H . Lighting-effects classificationin facial images using wavelet packets transform. International Journal of Wavelets, Multiresolution and InformationProcessing, 2003, 1(2): 199–215.
doi:10.1142/S021969130300013X
50 Lai J H, Yuen P C, Feng G C . Spectroface: a Fourier-based approach for human facerecognition. In: Proceedings of The SecondInt. Conf. on Multimodel Interface (ICMI'99), 1999, VI115–120
51 Yang L H, Bui T D, Suen C Y . Image recognition based on nonlinear wavelet approximation. International Journal of Wavelets, Multiresolutionand Information Processing, 2003, 1(2): 151–161.
doi:10.1142/S0219691303000104
52 Kumar S, Kumar D K . Visual hand gestures classificationusing wavelet transforms and moment based features. International Journal of Wavelets, Multiresolution and InformationProcessing, 2005, 3(1): 79–101.
doi:10.1142/S0219691305000762
53 Kumar S, Kumar D K, Sharma A, et al.. Visual hand gestures classification using wavelettransforms. International Journal of Wavelets,Multiresolution and Information Processing, 2003, 1(4): 373–392.
doi:10.1142/S0219691303000232
54 Sharnia A, Kumart D K, Kumar S . Wavelet directional histograms of the spatio-temporaltemplates of human gestures. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2004, 2(3): 283–298.
doi:10.1142/S0219691304000512
55 Yang F, Wang Z, Yu Y L . Chinese typeface generation and composition using B-splinewavelet transform. In: Proceedings ofSPIE, Wavelet Applications V Orlando, Florida, 1998, 616–620
56 El-Khamy S E, Hadhoud M M, Dessouky M I, et al.. Wavelet fusion: a tool to break the limits onLMMSE image super-resolution. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2006, 4(1): 105–118.
doi:10.1142/S0219691306001129
57 Li H . Wavelet-basedweighted average and human vision system image fusion. International Journal of Wavelets, Multiresolution and InformationProcessing, 2006, 4(1): 97–103.
doi:10.1142/S0219691306001117
58 Li S . Multisensorremote sensing image fusion using stationary wavelet transform: effectsof basis and decomposition level. InternationalJournal of Wavelets, Multiresolution and Information Processing, 2008, 6(1): 37–50.
doi:10.1142/S0219691308002203
59 Chambolle A, DeVore R A, Lee N Y, et al.. Nonlinear wavelet image processing: variationalproblems, compression, and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing, 1998, 7(3): 319–335.
doi:10.1109/83.661182
60 Combettes P L, Pesquet J C . Wavelet-constrained imagerestoration. International Journal of Wavelets,Multiresolution and Information Processing, 2004, 2(4): 371–389.
doi:10.1142/S0219691304000688
61 Combettes P L . Convex multiresolution analysis. IEEETransactions on Pattern Analysis And Machine Intelligence, 1998, 20(12): 1308–1318.
doi:10.1109/34.735804
62 Liao Z, Tang Y Y . Signal denoising using waveletsand block hidden markov model. InternationalJournal of Pattern Recognition and Artificial Intelligence, 2005, 19(5): 681–700.
doi:10.1142/S0218001405004265
63 You X, Chen Q, Fang B, et al.. Thinning character using modulus minima of wavelettransform. International Journal of PatternRecognition and Artificial Intelligence, 2006, 20(3): 361–376.
doi:10.1142/S0218001406004764
64 Mallat S, Zhong S . Characterization of signalsfrom multiscale edges. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1992, 14(7): 710–732.
doi:10.1109/34.142909
65 Tang Y Y, Yang L H, Feng L . Characterization and detection of edges by Lipschitzexponent and MASW wavelet transform. In: Proc. the 14th Int. Conf. on Pattern Recognition, Brisbane, Australia, August 1998, 1572–1574
66 Hsieh J W, Liao H M, Ko M T, et al.. Wavelet-based shape form shading. Graphical Models and Image Processing, 1995, 57(4): 343–362.
doi:10.1006/gmip.1995.1030
67 Tang Y Y, Cheng H D, Suen C Y . Transformation-ring-projection (TRP) algorithm and itsVLSI implementation. International Journalof Pattern Recognition and Artificial Intelligence, 1991, 5(1 and 2): 25–56.
doi:10.1142/S0218001491000053
68 Horn B K P, Brooks M J, eds. Shape from Shading. Cambridge, MA: MIT Press, 1989
69 Unser M, Aldroubi A, Eden M . On the asymptotic convergence of B-spline wavelets toGabor functions. IEEE Transactions on InformationTheory, 1992, 38: 864–872.
doi:10.1109/18.119742
70 Unser M, Aldroubi A, Eden M . A family of polynomial spline wavelets transforms. Signal Processing, 1993, 30: 141–162.
doi:10.1016/0165‐1684(93)90144‐Y
71 Bow S T . Pattern Recognition and Image Preprocessing. New York: Marcel-Dekker, 1992
72 Shensa M J . The discrete wavelets transform: wedding the atrous and Mallat algorithms. IEEE Transactions Signal Processing, 1992, 40: 2464–2482.
doi:10.1109/78.157290
73 Starck J L, Bijaoui A, Murtagh F . Multiresolution support applied to image filtering anddeconvolution. Graphical Models Image Processing, 1995, 57: 420–431.
doi:10.1006/gmip.1995.1036
74 Tang Y Y, Suen C Y, Yan C D . Document processing for automatic knowledge acquisition. IEEE Transactions on Knowledge and Data Engineering, 1994, 6(1): 3–21.
doi:10.1109/69.273022
75 Mallat S G . Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoust. Speech Signal Process., 1989, 37(12): 2091–2110.
doi:10.1109/29.45554
76 Nastar C, Ayache N . Frequency-based non-rigidmotion analysis. IEEE Transactions on PatternAnal. and Mach. Intell., 18(11), 1996
77 O'Toole A, Abdi H, Deffenbacher K, et al.. Low-dimensional representation of faces in higherdimensions of the face space. Journal ofThe Optical Society of America A., 1993, 10(3): 405–411
78 Sirovich L, Kirby M . Low-dimensional procedurefor the characterization of human faces. Journal of The Optical Society of America A., 1987, 4(3): 519–524
79 Swets D L, Weng J . Using discriminant eigenfeaturesfor image retrieval. IEEE Transactionson Pattern Analysis And Machine Intelligence, 1996, 18(8): 831–836.
doi:10.1109/34.531802
80 Turk M, Pentland A . Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86.
doi:10.1162/jocn.1991.3.1.71
81 Yuen P C, Dai D Q, Feng G C . Wavelet-based PCA for human face recognition. Proceeding of IEEE Southwest Symposium on ImageAnalysis and Interpretation, 1998, 223–228
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed