Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2008, Vol. 2 Issue (2) : 129-137    https://doi.org/10.1007/s11704-008-0015-x
Decoherence control for high-temperature reservoirs
CUI Wei, XI Zairong, PAN Yu
Key Laboratory of Systems and Control, Institute of System Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
 Download: PDF(241 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the decoherence control coupled to a rather general environment, i.e., without using the Markov approximation. Markovian errors generally require high-energy excitations (of the reservoir) and tend to destroy the scalability of the adiabatic quantum computation. Especially, we find that deriving optimal control using the Pontryagin maximum principle, the decoherence can be suppressed even in high-temperature reservoirs. The influences of Ohmic reservoir with Lorentz-Drude regularization are numerically studied in a two-level system under ?c ? ?0 condition, here ?0 is the characteristic frequency of the quantum system of interest, and ?c the cut-off frequency of Ohmic reservoir. It implies that designing some engineered reservoirs with the controlled coupling and state of the environment can slow down the decoherence rate and delay the decoherence time. Moreover, we compared the non-Markovian optimal decoherence control with the Markovian one and find that with non-Markovian the engineered artificial reservoirs are better than the Markovian approximate in controlling the decoherence of open, dissipative quantum systems.
Issue Date: 05 June 2008
 Cite this article:   
XI Zairong,CUI Wei,PAN Yu. Decoherence control for high-temperature reservoirs[J]. Front. Comput. Sci., 2008, 2(2): 129-137.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-008-0015-x
https://academic.hep.com.cn/fcs/EN/Y2008/V2/I2/129
1 Breuer H P Petruccione F The Theory of Open QuantumSystemsOxfordOxford University Press 2002
2 Zhang J Li C W Wu R B et al.Maximal suppression of decoherence in Markovianquantum systemsJournal of Physics A: Mathematicaland General 2005 38(6587)65876601.
doi:10.1088/0305‐4470/38/29/013
3 Lloyd S Slotine J J E Analog quantum error correctionPhysical Review Letters 1998 80(18)40884091.
doi:10.1103/PhysRevLett.80.4088
4 Zanardi P Rasetti M Noiseless quantum codesPhysical Review Letters 1997 70(17)33063309.
doi:10.1103/PhysRevLett.79.3306
5 Chuang I L Yamamoto Y Simple quantum computerPhysical Review A 1995 52(5)34893496.
doi:10.1103/PhysRevA.52.3489
6 Alicki R Horodecki M Horodecki R et al.Dynamical description of quantum computing: Genericnonlocality of quantum noisePhysical ReviewA 2002 65(6)062101062111.
doi:10.1103/PhysRevA.65.062101
7 Zanardi P Stabilizingquantum informationPhysical Review A 2001 63(1)012301012304.
doi:10.1103/PhysRevA.63.012301
8 Neumann J Von Mathematical Foundations of Quantum MechanicsPrincetonPrinceton UniversityPress 1955
9 Nielsen M A Chuang I L Quantum Computation and QuantumInformationCambridgeCambridge University Press 2000
10 Mensky M B QuantumMenseurements and Decoherence: Models and PhenomenologyDordrechtKluwerAcademic Publishers 2000
11 Shor P W Schemefor reducing decoherence in quantum computer memoryPhysical Review A 1995 52(4)R2493R2496.
doi:10.1103/PhysRevA.52.R2493
12 Viola L Lloyd S Dynamical suppression of decoherencein two-state quantum systemsPhysical ReviewA 1998 58(4)27332744.
doi:10.1103/PhysRevA.58.2733
13 Elattari B Gurvitz S A Effect of measurement on thedecay rate of a quantum systemPhysicalReview Letters 2000 84(10)20472051.
doi:10.1103/PhysRevLett.84.2047
14 Altafini C Controllabilityproperties for finite dimensional quantum Markovian master equationsJournal of Mathematical Physics 2003 4423572372.
doi:10.1063/1.1571221
15 Rabitz H ViVie-Riedle R Motzkus M et al.Whither the future of controlling quantum phenomena?Science 2000 288(5467)824828.
doi:10.1126/science.288.5467.824
16 Levis R J Menkir G M Rabitz H Engineering Carbon Nanotubes and Nanotube Circuits UsingElectrical BreakdownScience 2001 292(5517)706709.
doi:10.1126/science.1059133
17 Rabitz H Shapedlaser pulses as reagentsScience 2003 299(5606)525527.
doi:10.1126/science.1080683
18 Krotov V F GlobalMethods in Optimal Control TheoryNewYorkMarcel Dekker INC 1996
19 Jirari H PÖtz W Quantum optimal control theoryand dynamic coupling in the spin-boson modelPhysical Review A 2006 74022306022324.
doi:10.1103/PhysRevA.74.022306
20 Sugny D Kontz C Jauslin H R Time-optimal control of a two-level dissipative quantumsystemPhysical Review A 2007 76023419023430.
doi:10.1103/PhysRevA.76.023419
21 Weiss U QuantumDissipative SystemSingaporeWorld Scientific Publishing 1993
22 Gardiner C W Zoller P Quantum Noise (2nd Edition)New YorkSpringer-Verlag 2000
23 Zurek W H Decoherence,einselection, and the quantum origins of the classicalReview of Modern Physics 2003 75(3)715775.
doi:10.1103/RevModPhys.75.715
24 Garraway B M Nonperturbativedecay of an atomic system in a cavityPhysicalReview A 1997 55(3)22902303.
doi:10.1103/PhysRevA.55.2290
25 Zhang J Wu R B Li C W et al.Asymptotically noise decoupling for Markovian openquantum systemsPhyical Review A 2007 75022324022335.
doi:10.1103/PhysRevA.75.022324
26 Tiersch M Schützhold R Non-Markovian decoherence inthe adiabatic quantum search algorithmPhysicalReview A 2007 75062313062318.
doi:10.1103/PhysRevA.75.062313
27 Blum K DensityMatrix Theory and ApplicationsNew YorkPlenum Press 1981
28 Thorwart M Hartmann L Goychuk I et al.Controlling decoherence of a two-level-atom in alossy cavityJournal of Modern Optics 2000 4729052917
29 Scully M O Zubairy M S Quantum OpticsCambridgeCambridge UniversityPress 1997
30 Meystre P AtomOpticsNew YorkSpringer-Verlag 2001
31 Anastopoulos C Hu B L Two-level atom-field interaction:Exact master equations for non-Markovian dynamics, decoherence, andrelaxationPhysical Review A 2000 62(3)033821033834.
doi:10.1103/PhysRevA.62.033821
32 Shresta S Anastopoulos C Dragulescu A et al.Non-Markovian qubit dynamics in a thermal fieldbath: Relaxation, decoherence, and entanglementPhysical Review A 2005 71022109022119.
doi:10.1103/PhysRevA.71.022109
33 Maniscalco S Olivares S Paris M G A Entanglement oscillations in non-Markovian quantum channelsPhysical Review A 2007 75062119062124.
doi:10.1103/PhysRevA.75.062119
34 Maniscalco S Piilo J Petruccione F et al.Lindblad-and non-Lindblad-type dynamics of a quantumBrownian particlePhysical Review A 2004 70032113032126.
doi:10.1103/PhysRevA.70.032113
35 Myatt C J King B E Turchette Q A et al.Decoherence of quantum superpositions through couplingto engineered reservoirsNature(London) 2000 403267273
36 Turchette Q A Myatt C J King B E et al.Decoherence and decay of motional quantum statesof a trapped atom coupled to engineered reservoirsPhysical Review A 2000 62053807053829.
doi:10.1103/PhysRevA.62.053807
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed