Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (3) : 412-416    https://doi.org/10.1007/s11704-009-0045-z
Research articles
Evaluation of subgraph searching algorithms for detecting network motifs in biological networks
Jialu HU 1, Lin GAO 1, Guimin QIN 2,
1.School of Computer Science and Technology, Xidian University, Xi’an 710071, China; 2.School of Computer Science and Technology, Xidian University, Xi’an 710071, China;Software School, Xidian University, Xi’an 710071, China;
 Download: PDF(405 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Despite several algorithms for searching subgraphs in motif detection presented in the literature, no effort has been done for characterizing their performance till now. This paper presents a methodology to evaluate the performance of three algorithms: edge sampling algorithm (ESA), enumerate subgraphs (ESU) and randomly enumerate subgraphs (RAND-ESU). A series of experiments are performed to test sampling speed and sampling quality. The results show that RAND-ESU is more efficient and has less computational cost than other algorithms for large-size motif detection, and ESU has its own advantage in small-size motif detection.
Keywords network motifs      subgraphs searching      subgraphs enumeration      sampling algorithm      
Issue Date: 05 September 2009
 Cite this article:   
Jialu HU,Guimin QIN,Lin GAO. Evaluation of subgraph searching algorithms for detecting network motifs in biological networks[J]. Front. Comput. Sci., 2009, 3(3): 412-416.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0045-z
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I3/412
Teichmann S A, Babu M M. Gene regulatory network growthby duplication. Nature Genetics, 2004, 36(5): 492―496

doi: 10.1038/ng1340
Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complexnetworks. Science, 2002, 298(5594): 824―827

doi: 10.1126/science.298.5594.824
Yeger-Lotem E, Sattath S, Kashtan N, et al. Network motifs in integrated cellular networksof transcription-regulation and proteinprotein interaction. In: Proceedings of the National Academy of Sciences, 2004, 101(16): 5934―5939

doi: 10.1073/pnas.0306752101
Shen-Orr S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulationnetwork of Escherichia coli. Nature Genetics, 2002, 31(1): 64―68

doi: 10.1038/ng881
Schreiber F, Schwbbermeyer H. Towards motif detection innetworks: frequency concepts and flexible search. In: Proceedings of Intl. Wsh. Network Tools and Applications in Biology, 2004, 91―102
Lee T I, Nical J R, Francois R, et al. Transcriptional regulatory networks in saccharomycescerevisiae. Science, 2002, 298(5594): 799―804

doi: 10.1126/science.1075090
Mangan S, Alon U. Structure and function ofthe feed-forward loop network motif. In:Proceedings of the National Academy of Sciences, 2003, 100(21): 11980―11985

doi: 10.1073/pnas.2133841100
Inokuchi A, Washio T, Motoda H. An apriori-based algorithm for mining frequent substructuresfrom graph data. In: Proceedings of EuropeanConference on Principles of Data Mining and Knowledge Discovery, 2000, 13―23
Yan X, Han J. gSpan: graph–basedsubstructure pattern mining. In: Proceedingsof IEEE International Conference on Data Mining, 2002, 721―723
Kashtan N, Itzkovitz S, Milo R, et al. Efficient sampling algorithm for estimatingsubgraph concentrations and detecting network motifs. Bioinformatics, 2004, 20(11): 1746―1758

doi: 10.1093/bioinformatics/bth163
Wernicke S. Efficientdetection of network motifs. IEEE/ACM Transactionson Computational Biology Bioinformatics, 2006, 3(4): 347―359

doi: 10.1109/TCBB.2006.51
Itzkovitz S, Milo R, Kastan N, et al. Subgraphs in random networks. Physical Review E, 2003, 68, 06127

doi: 10.1103/PhysRevE.68.026127
Johnson D B. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing, 1975, 4: 77―84

doi: 10.1137/0204007
Alon N, Yuster R, Zwick U. Finding and counting given length cycles. Algorithmica, 1997, 17: 209―223

doi: 10.1007/BF02523189
Akkoyunlu E. Theenumeration of maximal cliques of large graphs. SIAM Journal on Computing, 1973, 2: 1―6

doi: 10.1137/0202001
Nesetril J, Poljak S. On the complexity of thesubgraph problem. Commentationes MathematicaeUniversitatis Carolinae, 1985, 26:415―419
Dyer M, Frieze A, Jerrum M. Approximately counting Hamilton cycles in dense graphs. In: Proceedings of the 5th Annual ACM/SIAM Symposiumon Discrete Algorithms, 1994, 336―343
Frieze A, Kannan R. Quick approximation to matricesand applications. Combinatorica, 1999, 19(2): 175―220

doi: 10.1007/s004930050052
Jerrum M. Counting,Sampling and Integrating: Algorithms and Complexity. Birkhauser Verlag, 2003
Itzhack R, Mogilevski Y, Louzoun Y. An optimal algorithm for counting network motifs. Physica A, 2007, 381: 482―490

doi: 10.1016/j.physa.2007.02.102
Wernicke S, Rasche F. FANMOD: a tool for fast networkmotif detection. Bioinformatics, 2006, 22(9): 1152―1153

doi: 10.1093/bioinformatics/btl038
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed