Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (3) : 324-334    https://doi.org/10.1007/s11704-009-0058-7
Research articles
An alternative approach to characterize the topology of complex networks and its application in epidemic spreading
Zonghua LIU 1, Xiaoyan WU 1, Pak-Ming HUI 2,
1.Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200062, China; 2.Department of Physics, The Chinese University of Hong Kong, Hong Kong, China;
 Download: PDF(554 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the mean-field approach, epidemic spreading has been well studied. However, the mean-field approach cannot show the detailed contagion process, which is important in the control of epidemic. To fill this gap, we present a novel approach to study how the topological structure of complex network influences the concrete process of epidemic spreading. After transforming the network structure into hierarchical layers, we introduce a set of new parameters, i.e., the average fractions of degree for outgoing, ingoing, and remaining in the same layer, to describe the infection process. We find that this set of parameters are closely related to the degree distribution and the clustering coefficient but are more convenient than them in describing the process of epidemic spreading. Moreover, we find that the networks with exponential distribution have slower spreading speed than the networks with power-law degree distribution. Numerical simulations have confirmed the theoretical predictions.
Keywords complex networks      epidemic spreading      hierarchical layers      mean-field approach      fraction of degree for outgoing      
Issue Date: 05 September 2009
 Cite this article:   
Zonghua LIU,Xiaoyan WU,Pak-Ming HUI. An alternative approach to characterize the topology of complex networks and its application in epidemic spreading[J]. Front. Comput. Sci., 2009, 3(3): 324-334.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0058-7
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I3/324
Albert R, Barabasi A L. Statistical mechanics ofcomplex networks. Reviews of Modern Physics, 2002, 74: 47―97

doi: 10.1103/RevModPhys.74.47
Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics. Physics Reports, 2006, 424: 175―308

doi: 10.1016/j.physrep.2005.10.009
Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-freenetwoks. Physical Review Letters, 2001, 86: 3200―3203

doi: 10.1103/PhysRevLett.86.3200
Joo J, Lebowitz J L. Behavior of susceptible-infected-susceptibleepidemics on heterogeneous networks with saturation. Physical Review E, 2004, 69: 066105

doi: 10.1103/PhysRevE.69.066105
Barthelemy M, Barrat A, Pastor-Satorras R, et al. Dynamical patterns of epidemicoutbreaks in complex heterogeneous networks. Journal of Theoretical Biology, 2005, 235: 275―288

doi: 10.1016/j.jtbi.2005.01.011
Zheng D F, Hui P M, Trimper S, et al. Epidemics and dimensionality in hierarchicalnetworks. Physica A, 2005, 352: 659―668

doi: 10.1016/j.physa.2004.12.049
Liu Z, Lai Y C, Ye N. Propagation and immunization of infection on generalnetworks with both homogeneous and heterogeneous components. Physical Review E, 2003, 67: 031911

doi: 10.1103/PhysRevE.67.031911
Ben-Naim E, Krapivsky P L. Size of outbreaks near theepidemic threshold. Physical Review E, 2004, 69: 050901

doi: 10.1103/PhysRevE.69.050901
Shao Z, Sang J, Zou X, et al. Blackmail propagation on small-world networks. Physica A, 2005, 351: 662―670

doi: 10.1016/j.physa.2004.11.063
Newman M E J. Spread of epidemic disease on networks. Physical Review E, 2002, 66: 016128

doi: 10.1103/PhysRevE.66.016128
Zhang H, Liu Z, Ma W. Epidemic propagation and microscopic structure of complexnetworks. Chinese Physics Letters, 2006, 23: 1050―1053

doi: 10.1088/0256-307X/23/4/080
Eguiluz V M, Klemm K. Epidemic threshold in structuredscale-free networks. Physical Review Letters, 2002, 89: 108701

doi: 10.1103/PhysRevLett.89.108701
Liu Z, Hu B. Epidemic spreading in communitynetworks. Europhysics Letters, 2005, 72: 315―321

doi: 10.1209/epl/i2004-10550-5
Serrano M A, Boguna M. Percolation and epidemicthresholds in clustered networks. PhysicalReview Letters, 2006, 97: 088701

doi: 10.1103/PhysRevLett.97.088701
Gross T, Dommar D’Lima C J, Blasius B. Epidemic dynamics on an adaptive network. Physical Review Letters, 2006, 96: 208701

doi: 10.1103/PhysRevLett.96.208701
Zhou J, Liu Z. Epidemic spreading in complexnetworks. Frontiers of Physics in China, 2008, 3: 331―348

doi: 10.1007/s11467-008-0027-x
Zhou J, Liu Z, Li B. Influence of network structure on rumor propagation. Physics Letters A, 2007, 368: 458―463

doi: 10.1016/j.physleta.2007.01.094
Zhou Y, Liu Z, Zhou J. Periodic wave of epidemic spreading in community networks. Chinese Physics Letters, 2007, 24: 581―584

doi: 10.1088/0256-307X/24/2/078
Zhou J, Liu Z. Epidemic spreading in communitieswith mobile agents. Physica A, 2009, 388: 1228―1236

doi: 10.1016/j.physa.2008.12.014
Tang M, Liu L, Liu Z. Influence of dynamical condensation on epidemic spreadingin scale-free networks. Physical ReviewE, 2009, 79: 016108

doi: 10.1103/PhysRevE.79.016108
Anderson R M, May R M. Infections Diseases in Humans. Oxford University Press, Oxford, 1992
Pandit S A, Amritkar R E. Random spread on the familyof smallworld networks. Physical ReviewE, 2001, 63: 041104

doi: 10.1103/PhysRevE.63.041104
Adamic L A, Lukose R M, Puniyani A R, et al. Search in power-law networks. Physical Review E, 2001, 64: 046135

doi: 10.1103/PhysRevE.64.046135
Noh J D, Rieger H. Random walks on complex networks. Physical Review Letters, 2004, 92: 118701

doi: 10.1103/PhysRevLett.92.118701
Parris P E, Kenkre V M. Traversal times for randomwalks on smallworld networks. PhysicalReview E, 2005, 72: 056119

doi: 10.1103/PhysRevE.72.056119
Watts x D J. SmallWorlds: the Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton, 1999
Yan G, Zhou T, Hu B, et al. Efficient routing on complex networks. Physical Review E, 2006, 73: 046108

doi: 10.1103/PhysRevE.73.046108
Wang X G, Lai Y C, Lai C H. Oscillations of complex networks. Physical Review E, 2006, 74: 066104

doi: 10.1103/PhysRevE.74.066104
Liu Z, Ma W, Zhang H, et al. An efficient approach of controlling trafficcongestion in scale-free networks. PhysicaA, 2006, 370: 843―853

doi: 10.1016/j.physa.2006.02.021
Zhang H, Liu Z, Tang M, et al. An adaptive routing strategy for packet deliveryin complex networks. Physics Letters A, 2007, 364: 177―182

doi: 10.1016/j.physleta.2006.12.009
Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks. Nature, 1998, 393: 440

doi: 10.1038/30918
Holme P, Kim B J. Growing scale-free networkswith tunable clustering. Physical ReviewE, 2002, 65: 026107

doi: 10.1103/PhysRevE.65.026107
Wu X, Liu Z. How community structure influencesepidemic spread in social networks. PhysicaA, 2008, 387: 623―630

doi: 10.1016/j.physa.2007.09.039
Newman M E J. Assortative mixing in networks. PhysicalReview Letters, 2002, 89: 208701

doi: 10.1103/PhysRevLett.89.208701
Catanzaro M, Boguna M, Pastor-Satorras R. Generation of uncorrelated random scale-freenetworks. Physical Review E, 2005, 71: 027103

doi: 10.1103/PhysRevE.71.027103
Tang M, Liu Z, Zhou J. Condensation in a zero range process on weighted scale-freenetworks. Physical Review E, 2006, 74: 036101

doi: 10.1103/PhysRevE.74.036101
Newman M E J. Clustering and preferential attachment in growing networks. Physical Review E, 2001, 64: 025102

doi: 10.1103/PhysRevE.64.025102
[1] Wei DUAN, Zongchen FAN, Peng ZHANG, Gang GUO, Xiaogang QIU. Mathematical and computational approaches to epidemic modeling: a comprehensive review[J]. Front. Comput. Sci., 2015, 9(5): 806-826.
[2] Zihou WANG, Yanni HAN, Tao LIN, Yuemei XU, Song CI, Hui TANG. Topology-aware virtual network embedding based on closeness centrality[J]. Front Comput Sci, 2013, 7(3): 446-457.
[3] Weifeng PAN , Yutao MA , Jing LIU , Yeyi QIN , Bing LI , . Class structure refactoring of object-oriented softwares using community detection in dependency networks[J]. Front. Comput. Sci., 2009, 3(3): 396-404.
[4] Lili RONG , Tianzhu GUO , Jiyong ZHANG , . A new centrality measure based on sub-tree[J]. Front. Comput. Sci., 2009, 3(3): 356-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed