Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (4) : 435-444    https://doi.org/10.1007/s11704-009-0059-6
Research articles
Socially inspired search and ranking in mobile social networking: concepts and challenges
Yufeng WANG1,Akihiro NAKAO2,Jianhua MA3,
1.College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunication, Nanjing 230003, China;National Institute of Information and Communications Technology (NICT), Tokyo 113-0001, Japan; 2.Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo 113-8654, Japan;National Institute of Information and Communications Technology (NICT), Tokyo 113-0001, Japan; 3.Faculty of Computer & Information Sciences, Hosei University, Tokyo 184-8584, Japan;
 Download: PDF(366 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, we provide an overview of challenges in mobile search and ranking, and envision the fundamental features that should be satisfied. We argue that two principles will help improve the relevance and quality of mobile search and ranking: the first one is to examine both intrinsic content features and context of items (usage statistics and social features, etc.); and the second one lies in that no algorithms can replace the objectivity of a human being—let users define the sites that they feel are relevant, leverage their social networks, and over time see their results become highly personalized. Specifically, wireless-virtualcommunity- based mobile search and ranking architecture is proposed in this paper, in which communities act as a first class abstraction for information sharing. Then, we introduce briefly the potential procedures of achieving high relevance and quality in mobile search and ranking based on wireless virtual community.
Keywords mobile search and ranking      social networking      virtual community      link analysis      
Issue Date: 05 December 2009
 Cite this article:   
Yufeng WANG,Jianhua MA,Akihiro NAKAO. Socially inspired search and ranking in mobile social networking: concepts and challenges[J]. Front. Comput. Sci., 2009, 3(4): 435-444.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0059-6
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I4/435
Parameswaran M, Whinston A B. Social computing: an overview. Communications of the Association for InformationSystems, 2007, 19: 762―780
Surowiecki J. TheWisdom of Crowds. Anchor, 2005
Bjelland J, Canright G S, Kenth E M. Web link analysis: estimating a document’s importancefrom its context. Telektronikk, 2008, 95―113
Geoffrey S, Canright G S, Kenth E M. Introducing network analysis, Telektronikk, 2008, 4―18
Page L, Brin S, Motwani R, Winograd T. ThePageRank citation ranking: bringing order to the Web. Technical report, Stanford Digital Library Technologies Project, 1998
Kleinberg J M. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46(5): 604―632

doi: 10.1145/324133.324140
Lempel R, Moran S. SALSA: the stochastic approachfor linkstructure analysis. ACM Transactionsin Information Systems, 2001, 19(2): 131―160

doi: 10.1145/382979.383041
Zhang J, Ackerman M S, Adamic L. Expertise networksin online communities: structure and algorithms. In: Proceedings of the 16th WWW, 2007, 221―230
Jurczyk P, Agichtein E. Discovering authorities inquestion answer communities by using link analysis. In: Proceedings of the ACM 16th CIKM, 2007, 919―922
Ziegler C N, Lausen G. Propagation models for trustand distrust in social networks. InformationSystems Frontiers, 2005, 7(4/5): 337―358

doi: 10.1007/s10796-005-4807-3
Guha R, Kumar R, Raghavan P, et al. Propagation of trust and distrust. In: Proceedings of the 13th international conferenceon WWW, 2004, 403―412
Kamvar S D, Schlosser M T, Garcia-Molina H. The EigenTrust algorithm for reputationmanagement in P2P networks. In: Proceedingsof the 12th WWW, 2003, 640―651
Gyongyi Z, Garcia-Molina H, Pedersen J. Combating web spam with TrustRank. In: Proceedings of the 30th International Conference on VLDB, 2004, 576―587
Greenwald A, Wicks J. QuickRank: a recursive rankingalgorithm. In: Proceedings of the 1st InternationalWorkshop on Computational Social Choice, 2006, 220―233
Weinman J. Anew approach to search. Business CommunicationsReview, 2007, 19―29
Joachims T, Granka L A, Pan B, et al. Accurately interpreting clickthrough data asimplicit feedback. In: Proceedings of SIGIR, 2005, 154―161
Seada K, Perkins C. Social networks: the killerapp for wireless Ad hoc networks? TechniqueReport in Nokia. 2006
Cao Y W, Krebs M, Toubekis G, et al. Mobile community information systems on wirelessmesh networks- an opportunity for developing countries and rural areas. In: Proceedings of the 5th International Workshopon Ubiquitous Mobile Information and Collaboration Systems (UMICS), 2007, 483―497
Mislove A, Gummadi K P, Druschel P. Exploiting social networks for Internet search. In: Proceedings of the HotNets, 2006
Luxenburger J, Weikum G. Exploiting community behaviorfor enhanced link analysis and web search. In: Proceedings of the 9th International Workshop on the Web and Databases(WebDB), 2006
Teevan J, Dumais S T, Horvitz E. Personalizing search via automated analysis of interestsand activities. In: Proceedings of theSIGIR, 2005, 449―456
Teevan J, Morris M R, Bush S. Discovering and using groups to improve personalizedsearch. In: Proceedings of the 2nd ACMInternational Conference on Web Search and Data Mining (WSDM), 2009, 15―24
Agichtein E, Castillo C, Donato D, et al. Finding high-quality content in social media. In: Proceedings of the 1st ACM International Conferenceon Web Search and Data Mining (WSDM), 2008, 183―194
Bian J, Liu Y D, Agichtein E, et al. Finding the right facts in the crowd: factoidquestion answering over social media. In: Proceedings of 17th WWW, 2008, 467―476
Hillebrand C, Groh G, Koch M. Mobile communities―extending online communitiesinto the real world. Mobile and CollaborativeBusiness, 2002, 7―18
Wellman B. Community:from neighborhood to network. Communicationsof the ACM, 2005, 48(10): 53―55

doi: 10.1145/1089107.1089137
Newman M E. Finding community structure in networks using the eigenvectors ofmatrices. Physical Review E, 2006, 74(3): 036104

doi: 10.1103/PhysRevE.74.036104
Danon L, Diaz-Guilera A, Duch J, et al. Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005
Clauset A. Findinglocal community structure in networks. Physical Review E, 2005, 72(2): 026132

doi: 10.1103/PhysRevE.72.026132
Clauset A, Newman M E, Moore C. Finding community structure in very large networks. Physical Review E, 2004, 70: 066111

doi: 10.1103/PhysRevE.70.066111
Sepandar K, Taher H, Christopher M, et al. Exploiting the block structure of the web forcomputing PageRank. Technique Report. Stanford, 2003
Castano S, Montanelli S. Semantic self-formation ofcommunities of peers. In: Proceedings ofthe ESWC, 2005
Wang Y F, Wang W D, Sakurai C,et al. On studying P2P topology construction based onvirtual region and its effect on search performance. In: Proceedings of the 3rd UIC, 2006
Das T, Nandi S, Ganguly N. Community formation and search in P2P: a robust and self-adjustingalgorithm. In: Proceedings of the 3rd Workshopon IAMCOM, 2009
Kuhn M, Wattenhofer R. Community-aware mobile networking. In: Proceedings of the 1st Workshop on MSPE, 2006
Motani M, Srinivasan V, Nuggehalli P S. PeopleNet: engineering a wireless virtual social network. In: Proceedings of MobiCom, 2005
Bakos B, Farkas L, Nurminen J K. Search engine for phonebook-based smart phone networks. In: Proceedings of the IEEE 61st Semiannual VehicularTechnology Conference (VTC), 2005
[1] Hao WU, Yijian PEI, Jiang YU, . Detecting academic experts by topic-sensitive link analysis[J]. Front. Comput. Sci., 2009, 3(4): 445-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed