Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2010, Vol. 4 Issue (3) : 405-416    https://doi.org/10.1007/s11704-010-0119-y
Research articles
Virtual cityscapes: recent advances in crowd modeling and traffic simulation
Ming C. LIN,Dinesh MANOCHA,
Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, USA;
 Download: PDF(1053 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We survey our recent work on interactive modeling, generation, and control of large-scale crowds and traffic for simulating digital cities. These include multi-agent navigation, simulating large crowds with emerging behaviors as well as interactive simulation of traffic on large road networks. We also highlight their performance on different scenarios.
Keywords crowd modeling      multi-agent simulation      continuum traffic      digital cities      
Issue Date: 05 September 2010
 Cite this article:   
Ming C. LIN,Dinesh MANOCHA. Virtual cityscapes: recent advances in crowd modeling and traffic simulation[J]. Front. Comput. Sci., 2010, 4(3): 405-416.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-010-0119-y
https://academic.hep.com.cn/fcs/EN/Y2010/V4/I3/405
Guy S, Chhugani J, Kim C, Satish N, Lin M C, Manocha D, Dubey P. Clearpath:Highly parallel collision avoidance for multi-agent simulation. In: Proceedings of ACM SIGGRAPH/Eurographics Symposiumon Computer Animation, 2009, 177―187
Narain R, Golas A, Curtis S, Lin M C. Aggregate dynamics for dense crowd simulation. In: ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia), 2009
Patil S, Berg J V D, Curtis S, Lin M C, Manocha D. Directing crowd simulations using navigationfields. Technical report. Department ofComputer Science, University of North Carolina, May2009
Pelechano N, Allbeck J M, Badler N I. Virtual Crowds: Methods, Simulation and Control. Morgan and Claypool Publishers, 2008
Helbing D, Molnar P. Social force model for pedestrian dynamics. Physical Review E, 1995, 51: 4282

doi: 10.1103/PhysRevE.51.4282
Reynolds C W. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25―34

doi: 10.1145/37402.37406
Reynolds C W. Steering behaviors for autonomous characters. In: Game Developers Conference, 1999
Berg J V D, Guy S J, Lin M, Manocha D. Reciprocaln-body collision avoidance. InternationalSymposium of Robotics Research, 2009
van den Berg J, Seawall J, Lin M C, Manocha D. Virtualizedtra_c: Reconstructing traffic flows from discrete spatio-temporaldata. In: Proceedings of IEEE Virtual RealityConference, 2009, 183―190
Yersin B, Maim J, Ciechomski P, Schertenleib S, Thalmann D. Steering a virtual crowdbased on a semantically augmented navigation graph. In: VCROWDS 2005, 2005
Pettré J, Ond?ej J, Olivier A, Cretual A, Donikian S. Experiment-based modeling,simulation and validation of interactions between virtual walkers. In: Symposium on Computer Animation, ACM, 2009, 189―198
Chenney S. Flowtiles. In: Proceedings of 2004 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, 2004
Jin X, Xu J, Wang C C L, Huang S, Zhang J. Interactive control of large crowd navigationin virtual environment using vector field. In IEEE Computer Graphics and Application, 2008
Treuille A, Cooper S, Popovic Z. Continuum crowds. In: Proceedingsof ACM SIGGRAPH, 2006, 1160―1168
Zipf G K. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, 1949
Still G. CrowdDynamics. PhD thesis, University of Warwick, UK, 2000
Karamouzas I, Heil P, Beek P, Overmars M. Apredictive collision avoidance model for pedestrian simulation. In: Proceedings of Motion in Games, 2009, 41―52
Sarmady S, Haron F, Hj A Z. Modeling groups of pedestrians in least effort crowdmovements using cellular automata. In: Proceedings of 3rd Asia International Conference on Modeling andSimulation, 2009, 520―525
Kagarlis M. Methodand apparatus of simulating movement of an autonomous entity throughan environment. United States Patent No.US 7,188,056, Sep. 2002
Guy S, Chuggani J, Curtis S, Dubey P, Lin M, Manocha D. Pledestrians:A least-effort approach to crowd simulation. Technical report. Department of Computer Science, University of NorthCarolina, 2010
Shao W, Terzopoulos D. Autonomous pedestrians. In: SCA'05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. New York: ACM Press, 2005, 19―28
Yu Q, Terzopoulos D. A decision network frameworkfor the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on ComputerAnimation, 2007, 119―128
Pelechano N, Allbeck J M, Badler N I. Controlling individual agents in highdensity crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/EurographicsSymposium on Computer Animation, 2007, 99―108
Antonini G, Martinez S V, Bierlaire M, Thiran J P. Behavioral priors for detection and tracking of pedestrians in videosequences. International Journal of ComputerVision, 2006, 69(2): 159―180

doi: 10.1007/s11263-005-4797-0
Johansson A, Helbing D, Shukla P K. Specification of the social force pedestrian model byevolutionary adjustment to video tracking data. Advances in Complex Systems, 2007, 1 (Suppl 2): 271―288

doi: 10.1142/S0219525907001355
Scovanner P, Tappen M F. Learning pedestrian dynamicsfrom the real world. In: Proceedings of2009 International Conference on Computer Vision (ICCV), 2009
Kang Y, Park S, Lee E. An efficient control over human running animation withextension of planar hopper model. In: PacificGraphics, 1998, 169―176
Juang J. Minimalenergy control on trajectory generation. In: International Conference on Information Intelligence and Systems, 1999, 204
Channon P H, Hopkins S H, Phan D T. Derivation of optimal walking motions for a biped walkingrobot. Robotica, 1992, 10: 165–172

doi: 10.1017/S026357470000758X
Roussel L, Canudas de Wit C, Goswami A. Generation of energy optimal complete gait cycles forbiped robots. IEEE Transactions on Roboticsand Automation, 1998, 16: 2036―2041
Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 1998, 17(7): 760―772

doi: 10.1177/027836499801700706
van den Berg J, Patil S, Seawall J, Manocha D, Lin M C. Interactive navigation ofindividual agents in crowded environments. In: Proceedings of ACM Symposium on Interactive 3D Graphics and Games, 2008, 139―147
van den Berg J, Lin M C, Manocha D. Reciprocal velocity obstacles for realtime multi-agentnavigation. In: Proceedings of IEEE Conferenceon Robotics and Automation, 2008, 1928―1935
Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular trafficand some related systems. Physics Reports, 2000, 329(4―6): 199―329
Aw A, Rascle M. Resurrection of “secondorder” models of traffic flow. SIAMJournal of Applied Mathmatics, 2000,(60): 916―938
Zhang H M. A non-equilibrium traffic model deviod of gas-like behavior. Transportation Research Part B: Methodological, 2002, 36(3): 275―290

doi: 10.1016/S0191-2615(00)00050-3
Sewall J, Welkie D, Merrell P, Lin M C. Continuumtraffic simulation. In: Proceedings ofEurographics, 2010
Clark C M, Bretl T, Rock S. Applying kinodynamic randomized motion planning witha dynamic priority system to multi-robot space systems.In: Proceedings of IEEE Aerospace Conference, 2002, 7: 3621―3631
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed