Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2012, Vol. 6 Issue (1) : 102-110    https://doi.org/10.1007/s11704-011-1186-4
RESEARCH ARTICLE
Forecasting complex group behavior via multiple plan recognition
Xiaochen LI, Wenji MAO(), Daniel ZENG
State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Group behavior forecasting is an emergent research and application field in social computing. Most of the existing group behavior forecasting methods have heavily relied on structured data which is usually hard to obtain. To ease the heavy reliance on structured data, in this paper, we propose a computational approach based on the recognition of multiple plans/intentions underlying group behavior.We further conduct human experiment to empirically evaluate the effectiveness of our proposed approach.

Keywords group behavior forecasting      multiple plan recognition      graph search     
Corresponding Author(s): MAO Wenji,Email:wenji.mao@ia.ac.cn   
Issue Date: 01 February 2012
 Cite this article:   
Xiaochen LI,Wenji MAO,Daniel ZENG. Forecasting complex group behavior via multiple plan recognition[J]. Front Comput Sci, 2012, 6(1): 102-110.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-011-1186-4
https://academic.hep.com.cn/fcs/EN/Y2012/V6/I1/102
1 Wang F Y, Carley K M, Zeng D, Mao W. Social computing: from social informatics to social intelligence. IEEE Intelligent Systems , 2007, 22(2): 79-83
doi: 10.1109/MIS.2007.41
2 Zeng D, Wang F Y, Carley K M. Social computing. IEEE Intelligent Systems , 2007, 22(5): 20-22
doi: 10.1109/MIS.2007.4338490
3 Martinez V, Simari G I, Sliva A, Subrahmanian V S. CONVEX: similarity-based algorithms for forecasting group behavior. IEEE Intelligent Systems , 2008, 23(4): 51-57
doi: 10.1109/MIS.2008.62
4 Khuller S, Martinez V, Nau D, Simari G, Sliva A, Subrahmanian V S. Finding most probable worlds of probabilistic logic programs. In: Proceedings of 1st International Conference on Scalable Uncertainty Management . 2007, 45-59
doi: 10.1007/978-3-540-75410-7_4
5 Li X, Mao W, Zeng D, Wang F Y. Automatic construction of domain theory for attack planning. In: Proceedings of the 2010 IEEE International Conference on Intelligence and Security Informatics . 2010, 65-70
6 Geib C W, Goldman R P. A probabilistic plan recognition algorithm based on plan tree grammars. Artificial Intelligence , 2009, 173(11): 1101-1132
doi: 10.1016/j.artint.2009.01.003
7 Hu D H, Yang Q. CIGAR: concurrent and interleaving goal and activity recognition. In: Proceedings of 23rd National Conference on Artificial Intelligence . 2008, 1363-1368
8 Kutluhan E, James H, Dana S N. HTN planning: complexity and expressivity. In: Proceedings of 12th National Conference on Artificial Intelligence . 1994, 1123-1128
9 Subrahmanian V S. Cultural modeling in real time. Science , 2007, 317(5844): 1509-1510
doi: 10.1126/science.1148306
10 Subrahmanian V S, Albanese M, Martinez M V, Nau D, Reforgiato D, Simari G I, Sliva A, Wilkenfeld J, Udrea O. CARA: a culturalreasoning architecture. IEEE Intelligent Systems , 2007, 22(2): 12-16
doi: 10.1109/MIS.2007.25
11 Charniak E, Goldman R P. A Bayesian model of plan recognition. Artificial Intelligence , 1993, 64(1): 53-79
doi: 10.1016/0004-3702(93)90060-O
12 Huber M J, Durfee E H, Wellman M P. The automated mapping of plans for plan recognition. In: Proceedings of 12th National Conference on Artificial Intelligence . 1994, 344-351
13 Albrecht D W, Zukerman I, Nicholson A E. Bayesian models for keyhole plan recognition in an adventure game. User Modeling and User-Adapted Interaction , 1998, 8(1): 5-47
doi: 10.1023/A:1008238218679
14 Bui H H, Venkatesh S, West G. Policy recognition in the abstract hid den Markov model. Journal of Artificial Intelligence Research , 2002, 17(1): 451-499
15 Pynadath D V, Wellman M P. Probabilistic state-dependent grammars for plan recognition. In: Proceedings of 16th Conference on Uncertainty in Artificial Intelligence . 2000, 507-514
16 Goldman R, Geib C, Miller C. A new model of plan recognition. In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence . 1999, 245-254
17 Charikar M, Chekuri C, Cheung T, Dai Z, Goel A, Guha S, Li M. Approximation algorithms for directed Steiner problems. In: Proceedings of 9th Annual ACM-SIAM Symposium on Discrete Algorithms . 1998, 192-200
18 Zosin L, Khuller S. On directed Steiner trees. In: Proceedings of 13th Annual ACM-SIAM Symposium on Discrete Algorithms . 2002, 59-63
19 Garey M R, Johnson D S. Computers and intractability: a guide to the theory of NP-completeness. New York: W. H. Freeman & Co., 1990
[1] Peng PENG, Lei ZOU, Zhenqin DU, Dongyan ZHAO. Using partial evaluation in holistic subgraph search[J]. Front. Comput. Sci., 2018, 12(5): 966-983.
[2] Shuai MA,Jia LI,Chunming HU,Xuelian LIN,Jinpeng HUAI. Big graph search: challenges and techniques[J]. Front. Comput. Sci., 2016, 10(3): 387-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed