Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2013, Vol. 7 Issue (2) : 195-203    https://doi.org/10.1007/s11704-013-2057-y
RESEARCH ARTICLE
Probability tree based passenger flow prediction and its application to the Beijing subway system
Biao LENG1,2,3, Jiabei ZENG2, Zhang XIONG1,2,3, Weifeng LV1,2,3(), Yueliang WAN4
1. State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China; 2. School of Computer Science and Engineering, Beihang University, Beijing 100191, China; 3. Shenzhen Key Laboratory of Data Vitalization (Smart City), Research Institute of Beihang University in Shenzhen, Shenzhen 518057, China; 4. The Third Research Institute of Ministry of Public Security Run Technologies Co. Ltd., Beijing 100044, China
 Download: PDF(627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to provide citizens with safe, convenient and comfortable services and infrastructure in a metropolis, the prediction of passenger flows in the metro-net of subway system has become more important than ever before. Although a great number of prediction methods have been presented in the field of transportation, all of them belong to the station oriented approach, which is not well suited to the Beijing subway system. This paper proposes a novel metro-net oriented method, called the probability tree based passenger flow model, which is also based on historic origin-destination (OD) information. First it learns and obtains the appearance probabilities for each kind of OD pair. For the real-time origin datum, the destination datum is calculated, and then several kinds of passenger flow in the metro-net can be predicted by gathering all the contributions. The results of experiments, using the historical data of Beijing subway, show that although the proposed method has lower performance than existing prediction approaches for forecasting exit passenger flows, it is able to predict several additional kinds of passenger flow in stations and throughout the subway system; and it is a more feasible, suitable, and advanced passenger flow prediction model for Beijing subway system.

Keywords passenger flow      prediction tree model      origindestination information     
Corresponding Author(s): LV Weifeng,Email:lwf@nlsde.buaa.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Biao LENG,Jiabei ZENG,Zhang XIONG, et al. Probability tree based passenger flow prediction and its application to the Beijing subway system[J]. Front Comput Sci, 2013, 7(2): 195-203.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-2057-y
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I2/195
1 Beijing Metro Network Control Center. Research on clearing method from Beijing metro clearing management center. 2007
2 Nikolopoulos K, Goodwin P, Patelis A, Assimakopoulos V. Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research , 2007, 180(1): 354-368
doi: 10.1016/j.ejor.2006.03.047
3 Miyano T, Kimoto S, Shibuta H, Nakashima K, Ikenaga Y, Aihara K. Time series analysis and prediction on complex dynamical behavior observed in a blast furnace. Physica D: Nonlinear Phenomena , 2000, 135(3): 305-330
doi: 10.1016/S0167-2789(99)00135-9
4 Hassan M, others. A combination of hidden markov model and fuzzy model for stock market forecasting. Neurocomputing , 2009, 72(16): 3439-3446
doi: 10.1016/j.neucom.2008.09.029
5 Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least squares support vector machines. Tutorial of the 2003 International Joint Conference on Neural Networks , 2003
6 Chandra S, Al-Deek H. Predictions of freeway traffic speeds and volumes using vector autoregressive models. Journal of Intelligent Transportation Systems , 2009, 13(2): 53-72
doi: 10.1080/15472450902858368
7 Frejinger E, Bierlaire M. Capturing correlation with subnetworks in route choice models. Transportation Research Part B: Methodological , 2007, 41(3): 363-378
doi: 10.1016/j.trb.2006.06.003
8 Lu Y, AbouRizk S. Automated box-jenkins forecasting modelling. Automation in Construction , 2009, 18(5): 547-558
doi: 10.1016/j.autcon.2008.11.007
9 Lin C, Yang S. Forecast of the output value of taiwan’s optoelectronics industry using the grey forecasting model. Technological Forecasting and Social Change , 2003, 70(2): 177-186
doi: 10.1016/S0040-1625(01)00191-3
10 Yu P, Chen S, Chen C, Yang T. The potential of fuzzy multi-objective model for rainfall forecasting from typhoons. Natural Hazards , 2005, 34(2): 131-150
doi: 10.1007/s11069-004-8889-x
11 Abdel-Aty M, Pemmanaboina R. Calibrating a real-time traffic crashprediction model using archived weather and its traffic data. IEEE Transactions on Intelligent Transportation Systems , 2006, 7(2): 167-174
doi: 10.1109/TITS.2006.874710
12 Paris H, Broucke S. Measuring cognitive determinants of speeding: An application of the theory of planned behaviour. Transportation Research Part F: Traffic Psychology and Behaviour , 2008, 11(3): 168-180
doi: 10.1016/j.trf.2007.09.002
13 Wu C, Ho J, Lee D. Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems , 2004, 5(4): 276-281
doi: 10.1109/TITS.2004.837813
14 Vanajakshi L, Rilett L. Support vector machine technique for the short term prediction of travel time. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium . 2007, 600-605
doi: 10.1109/IVS.2007.4290181
15 Hu H F, Yang Z, Bao J M. Wavelet transform-based distributed compressed sensing in wireless sensor networks. China Communications , 2012, 9(2): 1-12
16 Huang D. Wavelet analysis in a traffic model. Physica A: Statistical Mechanics and its Applications , 2003, 329(1): 298-308
17 Jiang X, Adeli H. Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering , 2005, 131(10): 771-779
doi: 10.1061/(ASCE)0733-947X(2005)131:10(771)
18 Xie Y, Zhang Y. A wavelet network model for short-term traffic volume forecasting. Journal of Intelligent Transportation Systems , 2006, 10(3): 141-150
doi: 10.1080/15472450600798551
19 Vlahogianni E, Golias J, Karlaftis M. Short-term traffic forecasting: Overview of objectives and methods. Transport Reviews , 2004, 24(5): 533-557
doi: 10.1080/0144164042000195072
20 Lee S, Lee Y, Cho B. Short-term travel speed prediction models in car navigation systems. Journal of Advanced Transportation , 2006, 40(2): 122-139
doi: 10.1002/atr.5670400203
21 Kang X, Ren F J. Predicting complex word emotions and topics through a hierarchical Bayesian network. China Communications , 2012, 9(3): 99-109
22 Zhao S, Ni T, Wang Y, Gao X. A new approach to the prediction of passenger flow in a transit system. Computers & Mathematics with Applications , 2011, 61(8): 1968-1974
doi: 10.1016/j.camwa.2010.08.023
23 Chen M, Wei Y. Exploring time variants for short-term passenger flow. Journal of Transport Geography , 2011, 19(4): 488-498
doi: 10.1016/j.jtrangeo.2010.04.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed