Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2013, Vol. 7 Issue (5) : 729-744    https://doi.org/10.1007/s11704-013-2302-4
RESEARCH ARTICLE
An ACO-RFD hybrid method to solve NP-complete problems
Pablo RABANAL(), Ismael RODRÍGUEZ(), Fernando RUBIO()
Dept. Sistemas Informáticos y Computación, Facultad de Informática, Universidad Complutense de Madrid, Madrid 28040, Spain
 Download: PDF(0 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper we hybridize ant colony optimization (ACO) and river formation dynamics (RFD), two related swarm intelligence methods. In ACO, ants form paths (problem solutions) by following each other’s pheromone trails and reinforcing trails at best paths until eventually a single path is followed. On the other hand, RFD is based on copying how drops form rivers by eroding the ground and depositing sediments. In a rough sense, RFD can be seen as a gradient-oriented version of ACO. Several previous experiments have shown that the gradient orientation of RFD makes this method solve problems in a different way as ACO. In particular, RFD typically performs deepersearches, which in turn makes it find worse solutions than ACO in the first execution steps in general, though RFD solutions surpass ACO solutions after some more time passes. In this paper we try to get the best features of both worlds by hybridizing RFD and ACO. We use a kind of ant-drophybrid and consider both pheromone trails and altitudes in the environment. We apply the hybrid method, as well as ACO and RFD, to solve two NP-hard problems where ACO and RFD fit in a different manner: the traveling salesman problem (TSP) and the problem of the minimum distances tree in a variable-cost graph (MDV). We compare the results of each method and we analyze the advantages of using the hybrid approach in each case.

Keywords river formation dynamics      ant colony optimization      heuristic algorithms      NP-hard problems     
Corresponding Author(s): Pablo RABANAL   
Issue Date: 01 October 2013
 Cite this article:   
Pablo RABANAL,Ismael RODRÍGUEZ,Fernando RUBIO. An ACO-RFD hybrid method to solve NP-complete problems[J]. Front. Comput. Sci., 2013, 7(5): 729-744.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-2302-4
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I5/729
1 G Beni , J Wang . Swarm intelligence in cellular robotic systems. In: NATO Advanced Workshop on Robotics and Biological Systems. 1989
2 J Kennedy , R Eberhart . Swarm intelligence. TheMorgan Kaufmann series in evolutionary computation. Morgan Kaufmann Publishers, 2001
3 A Eiben , J Smith . Introduction to evolutionary computing. Springer, 2003
https://doi.org/10.1007/978-3-662-05094-1
4 J Kennedy . Swarm intelligence. In: Zomaya A, ed. Handbook of nature-inspired and innovative computing, 187−219. Springer US, 2006
5 D K Jong . Evolutionary computation: a unified approach. In: Genetic and Evolutionary Computation Conference, GECCO 2008. 2008, 2245−2258
6 R Chiong , ed. . Nature-inspired algorithms for optimisation, Volume 193 of Studies in Computational Intelligence. Springer, 2009
7 S Luke . Essentials of metaheuristics. Lulu, 2010
8 M Dorigo , V Maniezzo , A Colorni . Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1996, 26(1): 29−41
9 M Dorigo , L Gambardella . Ant colonies for the traveling salesman problem. BioSystems, 1997, 43(2): 73−81
https://doi.org/10.1016/S0303-2647(97)01708-5
10 M Dorigo , T Stützle . Ant colony optimization. Bradford Company, 2004
https://doi.org/10.1007/b99492
11 M Dorigo , M Birattari , T Stützle . Ant colony optimization–artificial ants as a computational intelligence technique. IEEE Computational Intelligence Magazine, 2006, 1: 28−39
https://doi.org/10.1109/MCI.2006.329691
12 M Reimann , K Doerner , R F Hartl . D-ants: savings based ants divide and conquer the vehicle routing problem. Computers & Operations Research, 2004, 31(4): 563−591
https://doi.org/10.1016/S0305-0548(03)00014-5
13 D Merkle , M Middendorf , H Schmeck . Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 333−346
https://doi.org/10.1109/TEVC.2002.802450
14 C Blum . Beam-ACO-hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 2005, 32(6): 1565−1591
https://doi.org/10.1016/j.cor.2003.11.018
15 L Lessing , I Dumitrescu , T Stützle . A comparison between ACO algorithms for the set covering problem. In: Proceedings of the 4th International workshop on Ant Colony Optimization and Swarm Intelligence (ANTS 2004), LNCS, Volume 3172, 1−12
16 S Fenet , C Solnon . Searching for maximum cliques with ant colony optimization. In: Proceedings of EvoWorkshops 2003, LNCS, Volume 2611, 236−245
17 V Maniezzo . Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 1999, 11(4): 358−369
https://doi.org/10.1287/ijoc.11.4.358
18 P Rabanal , I Rodríguez , F Rubio . Using river formation dynamics to design heuristic algorithms. In: Unconventional Computation, UC’07, LNCS 4618. 2007, 163−177
19 P Rabanal , I Rodríguez , F Rubio . Finding minimum spanning/distances trees by using river formation dynamics. In: Ant Colony Optimization and Swarm Intelligence, ANTS’08, LNCS 5217. 2008, 60−71
20 P Rabanal , I Rodríguez , F Rubio . Studying the application of ant colony optimization and river formation dynamics to the steiner tree problem. Evolutionary Intelligence, 2011, 4(1): 51−65
https://doi.org/10.1007/s12065-011-0049-0
21 P Rabanal , I Rodríguez , F Rubio . Applying river formation dynamics to solve NP-complete problems. In: Chiong R, ed. Nature-inspired algorithms for optimisation, Volume 193 of Studies in Computational Intelligence, 333−368. Springer, 2009
22 P Rabanal , I Rodríguez , F Rubio . Testing restorable systems: formal definition and heuristic solution based on river formation dynamics. Formal Aspects of Computing, 2012, In press
23 P Rabanal , I Rodríguez . Hybridizing river formation dynamics and ant colony optimization. In: Proceedings of the 10th European Conference on Advances in Artificial Life. 2009, 424−431
24 G Tech . The traveling salesman problem, 2012. Available at
25 K Hoffman . The traveling salesman problem, 2011.
26 C Hanen . Study of a np-hard cyclic scheduling problem: the recurrent job-shop. European Journal of Operational Research, 1994, 72(1): 82−101
https://doi.org/10.1016/0377-2217(94)90332-8
27 S Meguerdichian , F Koushanfar , M Potkonjak , M Srivastava . Coverage problems in wireless ad-hoc sensor networks. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies. 2001
28 Z J Lee , C Y Lee . A hybrid search algorithm with heuristics for resource allocation problem. Information Science-Informatics and Computer Science, 2005, 173: 155−167
29 T Gonzalez . Handbook of approximation algorithms and metaheuristics. Chapman & Hall/CRC, 2007
https://doi.org/10.1201/9781420010749
30 E L Lawler , J K Lenstram , Rinnooy A H G, Shmoys D B. The traveling salesman problem: a guide tour of combinatorial optimization. John Wiley and Sons, 1986
31 G Reinelt . The traveling salesman (computational solutions for TSP applications). Springer, 1994
32 B Golden , C Skiscim . Using simulated annealing to solve routing and location problems. Naval Research Logistics Quarterly, 1986, 33(2): 261−279
https://doi.org/10.1002/nav.3800330209
33 O Martin , S Otto . Combining simulated annealing with local search heuristics. Technical Report, 1993
34 H Braun . On solving travelling salesman problems by genetic algorithms. In: Proceedings of the 1stWorkshop on Parallel Problem Solving from Nature, PPSN I. 1991, 129−133
35 P Larrañaga , C Kuijpers , R M I Inza , S Dizdarevic . Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artificial Intelligence Review, 1999, 13: 129−170
https://doi.org/10.1023/A:1006529012972
36 C García-Martínez , O Cordón , F Herrera . A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research, 2007, 180(1): 116−148
https://doi.org/10.1016/j.ejor.2006.03.041
37 R Perlman . An algorithm for distributed computation of a spanningtree in an extended lan. In: ACM SIGCOMM Computer Communication Review. 1985, 44−53
38 L Peterson , B Davie . Computer networks: a systems approach. 3rd ed. Morgan Kaufmann, 2007
39 P Rabanal , I Rodríguez . Testing restorable systems by using RFD. In: Int.Work Conference on Artificial Neural Networks, IWANN’09. 2009
40 P Rabanal , I Rodríguez , F Rubio . Applying RFD to construct optimal quality-investment trees. J. UCS, 2010, 16(14): 1882−1901
41 Y Zhou . Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1083−1092
https://doi.org/10.1109/TEVC.2009.2016570
42 G Reinelt . TSPLIB 95. Technical Report, Research Report, Institut für Angewandte Mathematik, Universität Heidelberg, Heidelberg, Germany, 1995.
43 J Parejo-Maestre , J García-Gutiérrez , A Ruiz-Cortés , J Riquelme-Santos . STATService.
44 J Derrac , S García , D Molina , F Herrera . A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3−18
https://doi.org/10.1016/j.swevo.2011.02.002
45 M Friedman . The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 1937, 32: 674−701
https://doi.org/10.1080/01621459.1937.10503522
46 M Friedman . A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 1940, 11: 86−92
https://doi.org/10.1214/aoms/1177731944
47 J Hodges , E Lehmann . Ranks methods for combination of independent experiments in analysis of variance. Annals of Mathematical Statistics, 1962, 33: 482−497
https://doi.org/10.1214/aoms/1177704575
48 S Holm . A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 1979, 6: 65−70
[1] Sarab ALMUHAIDEB,Mohamed El Bachir MENAI. Impact of preprocessing on medical data classification[J]. Front. Comput. Sci., 2016, 10(6): 1082-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed