|
|
Dm-KDE: dynamical kernel density estimation by sequences of KDE estimators with fixed number of components over data streams |
Min XU1,2,Hisao ISHIBUCHI3,Xin GU1,Shitong WANG1,*( ) |
1. School of Digital Media, Jiangnan University,Wuxi 214122, China 2. School of Internet of Things Technology,Wuxi Institute of Technology,Wuxi 214121, China 3. Department of Computer Science, Osaka Prefecture University, Osaka 599-8531, Japan |
|
|
Abstract In many data stream mining applications, traditional density estimation methods such as kernel density estimation, reduced set density estimation can not be applied to the density estimation of data streams because of their high computational burden, processing time and intensive memory allocation requirement. In order to reduce the time and space complexity, a novel density estimation method Dm-KDE over data streams based on the proposed algorithm m-KDE which can be used to design a KDE estimator with the fixed number of kernel components for a dataset is proposed. In this method, Dm-KDE sequence entries are created by algorithm m-KDE instead of all kernels obtained from other density estimation methods. In order to further reduce the storage space, Dm-KDE sequence entries can be merged by calculating their KL divergences. Finally, the probability density functions over arbitrary time or entire time can be estimated through the obtained estimation model. In contrast to the state-of-the-art algorithm SOMKE, the distinctive advantage of the proposed algorithm Dm-KDE exists in that it can achieve the same accuracy with much less fixed number of kernel components such that it is suitable for the scenarios where higher on-line computation about the kernel density estimation over data streams is required.We compare Dm-KDE with SOMKE and M-kernel in terms of density estimation accuracy and running time for various stationary datasets. We also apply Dm-KDE to evolving data streams. Experimental results illustrate the effectiveness of the proposed method.
|
Keywords
kernel density estimation
Kullback–Leibler divergence
data streams
kernel width
time and space complexity
|
Corresponding Author(s):
Shitong WANG
|
Issue Date: 11 August 2014
|
|
1 |
Domingos P, Hulten G. A general framework for mining massive data stream. Journal of Computational and Graphical Statistics, 2003, 12(4): 945-949 doi: 10.1198/1061860032544
|
2 |
Aggarwal C C, Han J, Wang J Y, Yu P S. A framework for on-demand classification of evolving data streams. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(5): 577-589 doi: 10.1109/TKDE.2006.69
|
3 |
Elwell R, Polikar R. Incremental learning of concept drift in nonstationary environments. IEEE Transaction on Neural Networks, 2011, 22(10): 1517-1531 doi: 10.1109/TNN.2011.2160459
|
4 |
Lazar A A, Pnevatikakis E A. Video time encoding machines. IEEE Transaction on Neural Networks, 2011, 22(3): 461-473 doi: 10.1109/TNN.2010.2103323
|
5 |
Rogister P, Benosman R, Ieng S H, Lichtsteiner P, Delbruck T. Asynchronous event-based binocular stereo matching. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2): 347-353 doi: 10.1109/TNNLS.2011.2180025
|
6 |
Domingos P, Hulten G. Catching up with the data: research issues in mining data streams. In: Workshop on Research Issues in Data Mining and Knowledge Discovery. 2001, 1-5
|
7 |
Martinez W L, Martinez A R. Computational statistics handbook with MATLAB. London: Chapman & Hall, 2008
|
8 |
Heinz C, Seeger B. Cluster kernels: resource-aware kernel density estimators over streaming data. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(7): 880-893 doi: 10.1109/TKDE.2008.21
|
9 |
H?m?l?inen A. Self-organizing map and reduced kernel density estimation. PhD Thesis. Jyv?skyl?: University of Jyv?skyl?, 1995.
|
10 |
Girolami M, He C. Probability density estimation from optimally condensed data samples. Pattern Analysis and Machine Intelligence, 2003, 25(10): 1253-1264 doi: 10.1109/TPAMI.2003.1233899
|
11 |
Deng Z H, Chung F L, Wang S T. FRSDE: fast reduced set density estimator using minimal enclosing ball approximation. Pattern Recognition, 2008, 41(4): 1363-1372 doi: 10.1016/j.patcog.2007.09.013
|
12 |
Deng Z H, Kup-Sze C, Chung F L, Wang S T. Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 210-226 doi: 10.1109/TFUZZ.2010.2091961
|
13 |
Qian P J, Chung F L, Wang S T, Deng Z H. Fast graph-based relaxed clustering for large data sets using minimal enclosing ball. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(3): 672-687 doi: 10.1109/TSMCB.2011.2172604
|
14 |
Cai Z, Qian W, Wei L, Zhou A. M-kernel merging: toward density estimation over data streams. In: Proceedings of the 18th International Conference on Database System Advances. 2003, 285-292
|
15 |
Heinz C, Seeger B. Toward kernel density estimation over streaming data. In: Proceedings of International Conference on Management Data. 2006, 1-12
|
16 |
Cao Y, He H B, Man H. SOMKE: kernel density estimation over data streams by sequences of self-organizing maps. IEEE Transaction on Neural Network and Learning Systems, 2012, 23(8): 1254-1268 doi: 10.1109/TNNLS.2012.2201167
|
17 |
Kollios G, Gunopulos D. Efficient biased sampling for approximatie clustering and outlier detection in large datasets. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(5): 1170-1187 doi: 10.1109/TKDE.2003.1232271
|
18 |
He H, Chen S, Li K, Xu X. Incremental learning from stream data. IEEE Transaction on Neural Network, 2011, 22(12): 1901-1914 doi: 10.1109/TNN.2011.2171713
|
19 |
Kullback S, Leibler R A. On information and sufficiency. The Annals of Mathematical Statistics, 1951, 22(1): 79-86 doi: 10.1214/aoms/1177729694
|
20 |
Cao Y, He H, Man H, Shen X. Integration of self-organizing map (SOM) and kernel density estimation (KDE) for network intrusion detection. In Proceedings of SPIE, 2009, 1-12
|
21 |
Yang Y, Liu Y Y. An improved background and foreground modeling using kernel density estimation in moving object detection. In: Proceedings of the International Conference on Computer Science and Network Technology (ICCSNT). 2011, 1050-1054
|
22 |
DiNardo J, Tobias J L. Nonparametric density and regression estimation. The Journal of Economic Perspectives, 2001, 15(4): 11-28 doi: 10.1257/jep.15.4.11
|
23 |
Parzen E. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076 doi: 10.1214/aoms/1177704472
|
24 |
Silverman B W. Density estimation for statistics and data analysis. London: <PublisherName Language="chs">Chapma<?Pub Caret?>n & Hall</PublisherName>, 1986 doi: 10.1007/978-1-4899-3324-9
|
25 |
Jones M C, Marron J S, Sheather S J. A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 1996, 91(433): 401-407 doi: 10.1080/01621459.1996.10476701
|
26 |
Raykar V C, Duraiswami R. Fast optimal bandwidth selection for kernel density estimation. In: Proceedings of 6th SIAMInternational Conference on Data Mining. 2006, 524-528
|
27 |
Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y. An efficient K-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892 doi: 10.1109/TPAMI.2002.1017616
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|