|
|
Tolerance-based multigranulation rough sets in incomplete systems |
Zaiyue ZHANG1,Xibei YANG1,2,3,*( ) |
1. School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2. Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information (Nanjing University of Science and Technology),Ministry of Education, Nanjing 210094, China 3. Artificial Intelligence Key Laboratory of Sichuan Province, Zigong 643000, China |
|
|
Abstract Presently, the notion ofmultigranulation has been brought to our attention. In this paper, the multigranulation technique is introduced into incomplete information systems. Both tolerance relations and maximal consistent blocks are used to construct multigranulation rough sets. Not only are the basic properties about these models studied, but also the relationships between different multigranulation rough sets are explored. It is shown that by using maximal consistent blocks, the greater lower approximation and the same upper approximation as from tolerance relations can be obtained. Such a result is consistent with that of a single-granulation framework.
|
Keywords
incomplete information system
maximal consistent block
multigranulation rough sets
tolerance relation
|
Corresponding Author(s):
Xibei YANG
|
Issue Date: 11 October 2014
|
|
1 |
Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, 1992
|
2 |
Gore A. Earth in the Balance. New York: Plume Books, 1992
|
3 |
Ebenbach D H, Moore C F. Incomplete information, inferences, and individual differences: the case of environmental judgments. Organizational Behavior and Human Decision Processes, 2000, 81: 1-27
https://doi.org/10.1006/obhd.1999.2870
|
4 |
Yang X B, Yang J Y. Incomplete information system and rough set theory: models and attribute reductions. Science Press & Springer, 2012
|
5 |
Yang X B, Zhang M. Dominance-based fuzzy rough approach to an interval-valued decision system. Frontiers of Computer Science in China, 2011, 5: 195-204
https://doi.org/10.1007/s11704-011-0331-4
|
6 |
Alonso S, Chiclana F, Herrera F, Herrera-Viedma, Alcalá-Fdez, Porcel C. A consistency based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 2008, 23: 155-175
https://doi.org/10.1002/int.20262
|
7 |
Herrera-Viedma E, Chiclana F, Herrera F, . Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2007, 37: 176-189
https://doi.org/10.1109/TSMCB.2006.875872
|
8 |
Kryszkiewicz M. Rough set approach to incomplete information systems. Information Sciences, 1998, 112: 39-49
https://doi.org/10.1016/S0020-0255(98)10019-1
|
9 |
Leung Y, Li D Y. Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences, 2003, 115: 85-106
https://doi.org/10.1016/S0020-0255(03)00061-6
|
10 |
Leung Y, Wu W Z, Zhang W X. Knowledge acquisition in incomplete information systems: A rough set approach. European Journal of Operational Research, 2006, 168: 164-180
https://doi.org/10.1016/j.ejor.2004.03.032
|
11 |
Shao M W, Zhang W X. Dominance relation and rules in an incomplete ordered information system. International Journal of Intelligent Systems, 2005, 20: 13-27
https://doi.org/10.1002/int.20051
|
12 |
Yang X B, Yang J Y, Wu C, Yu D J. Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Information Sciences, 2008, 178: 1219-1234
https://doi.org/10.1016/j.ins.2007.09.019
|
13 |
Stefanowski J, Tsoukias A. Incomplete information tables and rough classification. Computational Intelligence, 2001, 17: 545-566
https://doi.org/10.1111/0824-7935.00162
|
14 |
Qian Y H, Liang J Y. Rough set method based on multi-granulations. 5th IEEE International Conference on Cognitive Informatics, 2006: 297-304
|
15 |
Qian Y H, Liang J Y, Dang C Y. Incomplete multigranulation rough set. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2010, 20: 420-431
https://doi.org/10.1109/TSMCA.2009.2035436
|
16 |
Qian Y H, Liang J Y, Pedrycz W, Dang C Y. Positive approximation: an accelerator for attribute reduction in rough set theory. Artificial Intelligence, 2010, 174: 597-618
https://doi.org/10.1016/j.artint.2010.04.018
|
17 |
Qian Y H, Liang J Y, Wei W. Pessimistic rough decision. Second International Workshop on Rough Sets Theory, 2010: 440-449
|
18 |
Qian Y H, Liang J Y, Yao Y Y, Dang C Y. MGRS: a multi-granulation rough set. Information Sciences, 2010, 180: 949-970
https://doi.org/10.1016/j.ins.2009.11.023
|
19 |
Liang J Y, Wang F, Dang C Y, Qian Y H. An efficient rough feature selection algorithm with a multi-granulation view. International Journal of Approximate Reasoning, 2012, 53: 912-926
https://doi.org/10.1016/j.ijar.2012.02.004
|
20 |
Yang X B, Zhang Y Q, Yang J Y. Local and global measurements of MGRS rules. International Journal of Computational Intelligence Systems, 2012, 5: 1010-1024
https://doi.org/10.1080/18756891.2012.747655
|
21 |
Yang X B, Song X N, Chen Z H, Yang J Y. On multigranulation rough sets in incomplete information system. International Journal of Machine Learning and Cybernetics, 2012, 3: 223-232
https://doi.org/10.1007/s13042-011-0054-8
|
22 |
Yang X B, Qi Y S, Song X N, Yang J Y. Test cost sensitive multigranulation rough set: model and minimal cost selection. Information Sciences, 2013, 250: 184-199
https://doi.org/10.1016/j.ins.2013.06.057
|
23 |
Yang X B, Song X N, She X H, Yang J Y. Hierarchy on multigranulation structures: a knowledge distance approach. International Journal of General Systems, 2013, 42: 754-773
https://doi.org/10.1080/03081079.2013.810625
|
24 |
Xu W H, Sun W X, Zhang X Y, Zhang W X. Multiple granulation rough set approach to ordered information systems. International Journal of General Systems, 2012, 41: 475-501
https://doi.org/10.1080/03081079.2012.673598
|
25 |
Xu W H, Wang Q R, Zhang X T. Multi-granulation rough sets based on tolerance relations. Soft Computing, 2013, 17: 1241-1252
https://doi.org/10.1007/s00500-012-0979-1
|
26 |
XuW H, Wang Q R, Zhang X T. Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. International Journal of Fuzzy Systems, 2011, 13: 246-259
|
27 |
Lin G P, Qian Y H, Li J J. NMGRS: Neighborhood-based multigranulation rough sets. International Journal of Approximate Reasoning, 2012, 53: 1080-1093
https://doi.org/10.1016/j.ijar.2012.05.004
|
28 |
Lin G P, Liang J Y, Qian Y H. Multigranulation rough sets: From partition to covering. Information Sciences, 2013, 241: 101-118
https://doi.org/10.1016/j.ins.2013.03.046
|
29 |
Guan Y Y, Wang H K. Set-valued information systems. Informa<?Pub Caret?>tion Sciences, 2006, 176: 2507-2525
https://doi.org/10.1016/j.ins.2005.12.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|