Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (4) : 623-635    https://doi.org/10.1007/s11704-015-4178-y
RESEARCH ARTICLE
Cuckoo search with varied scaling factor
Lijin WANG1,2,Yilong YIN1,3,*(),Yiwen ZHONG2
1. School of Computer Science and Technology, Shandong University, Jinan 250101, China
2. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
 Download: PDF(506 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cuckoo search (CS), inspired by the obligate brood parasitic behavior of some cuckoo species, iteratively uses Lévy flights random walk (LFRW) and biased/selective random walk (BSRW) to search for new solutions. In this study, we seek a simple strategy to set the scaling factor in LFRW, which can vary the scaling factor to achieve better performance. However, choosing the best scaling factor for each problem is intractable. Thus, we propose a varied scaling factor (VSF) strategy that samples a value from the range [0,1] uniformly at random for each iteration. In addition, we integrate the VSF strategy into several advanced CS variants. Extensive experiments are conducted on three groups of benchmark functions including 18 common test functions, 25 functions proposed in CEC 2005, and 28 functions introduced in CEC 2013. Experimental results demonstrate the effectiveness of the VSF strategy.

Keywords cuckoo search algorithm      uniform distribution      random sampling      scaling factor      function optimization problems     
Corresponding Author(s): Yilong YIN   
Just Accepted Date: 22 April 2015   Issue Date: 07 September 2015
 Cite this article:   
Lijin WANG,Yilong YIN,Yiwen ZHONG. Cuckoo search with varied scaling factor[J]. Front. Comput. Sci., 2015, 9(4): 623-635.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4178-y
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I4/623
1 Nocedal J. and Wright S. J. Numerical Optimization. 2nd ed. Springer Press, 2006
2 Holland J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press, 1975
3 Storn R. and Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341―359
https://doi.org/10.1023/A:1008202821328
4 Dorigo M, Maniezzo V, and Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29―41
https://doi.org/10.1109/3477.484436
5 Eberhart R. and Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, 39―43
https://doi.org/10.1109/MHS.1995.494215
6 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. 1995, 1942―1948
https://doi.org/10.1109/ICNN.1995.488968
7 Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report-tr06. 2005
8 Yang X S. A new metaheuristic bat-inspired algorithm. In: Proceedings of Nature Inspired Cooperative Strategies for Optimization. 2010, 65―74
https://doi.org/10.1007/978-3-642-12538-6_6
9 Yang X S. Nature-Inspried Metaheuristic Algorithms. 2nd ed. Luniver Press, 2010
10 Geem Z W, Kim J H, and Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76(2): 60―68
https://doi.org/10.1177/003754970107600201
11 Simon D. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702―713
https://doi.org/10.1109/TEVC.2008.919004
12 Yang X S and Deb S. Cuckoo search via lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing, 2009, 210―214
13 Yang X S and Deb S. Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330―343
https://doi.org/10.1504/IJMMNO.2010.035430
14 Zhan Z H, Zhang J, Li Y, and Shi Y H. Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1362―1381
https://doi.org/10.1109/TSMCB.2009.2015956
15 Das S, Suganthan P N. Differential evolution: a survey of the state-ofthe- art. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4―31
https://doi.org/10.1109/TEVC.2010.2059031
16 Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for feedforward neural network training. International Journal of Artificial Intelligence and Applications, 2011, 2(3): 36―43
https://doi.org/10.5121/ijaia.2011.2304
17 Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for global optimization. International Journal of Communications and Information Technology, 2011, 1(1): 31―44
18 Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82―102
https://doi.org/10.1109/4235.771163
19 Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 107―125
https://doi.org/10.1109/TEVC.2007.895272
20 Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 2009, 214(1): 108―132
https://doi.org/10.1016/j.amc.2009.03.090
21 Suganthan P N, Hansen N, Liang J J, Deb K, Chen Y P, Auger A, Tiwari S. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-parameter Optimization. KanGAL Report 2005005. 2005
22 Liang J J, Qu B Y, Suganthan P N, Hernández-Díaz A G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-parameter Optimization. Technical Report 201212. 2013
23 Wang Y, Cai Z X, and Zhang Q F. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55―66
https://doi.org/10.1109/TEVC.2010.2087271
24 Wang F, Luo L G, He X S, Wang Y. Hybrid optimization algorithm of pso and cuckoo search. In: Proceedings of the 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, 2011, 1172―1175
https://doi.org/10.1109/aimsec.2011.6010750
25 Wang L J, Yin Y L, Zhong Y W. Cuckoo search algorithm with dimension by dimension improvement. Journal of Software, 2013, 24(11): 2687―2698
https://doi.org/10.3724/SP.J.1001.2013.04476
26 Ouyang X X, Zhou Y Q, Luo Q F, Chen H. A novel discrete cuckoo search algorithm for spherical traveling salesman problem. Applied Mathematics and Information Sciences, 2013, 7(2): 777―784
https://doi.org/10.12785/amis/070248
27 Zhou Y Q, Zheng H Q, Luo Q F, Wu J Z. An improved cuckoo search algorithm for solving planar graph coloring problem. Applied Mathematics and Information Sciences, 2013, 7(2): 785―792
https://doi.org/10.12785/amis/070249
28 Marichelvam M K. An improved hybrid cuckoo search metaheuristics algorithm for permutation flow shop scheduling problems. International Journal of Bio-Inspired Computation, 2012, 4(4): 200―205
https://doi.org/10.1504/IJBIC.2012.048061
29 Yang X S, Deb S. Multiobjective cuckoo search for design optimization. Computers and Operations Research, 2013, 40(6): 1616―1624
https://doi.org/10.1016/j.cor.2011.09.026
30 Chandrasekaran K, Simon S P. Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm and Evolutionary Computation, 2012, 5: 1―16
https://doi.org/10.1016/j.swevo.2012.01.001
31 Marichelvam M K, Prabaharan T, Yang X S. Improved cuckoo search for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 2014, 19: 93―101
https://doi.org/10.1016/j.asoc.2014.02.005
32 Ghodrati A, Lotfi S. A hybrid cs/pso algorithm for global optimization. Lecture Notes in Computer Science, 2012, 89―98
https://doi.org/10.1007/978-3-642-28493-9_11
33 Li X T, Yin M H. Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chinese Physics B, 2012, 21(5): 113―118
https://doi.org/10.1088/1674-1056/21/5/050507
34 Li X T, Wang J N, Yin M H. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing and Applications, 2014, 24(6): 1233―1247
https://doi.org/10.1007/s00521-013-1354-6
35 Srivastava P R, Khandelwal R, Khandelwal S, Kumar S, Ranganatha S S. Automated test data generation using cuckoo search and tabu search algorithm. Journal of Intelligent Systems, 2012, 21(2): 195―224
https://doi.org/10.1515/jisys-2012-0009
36 Wang G G, Guo L H, Duan H, Liu L, Wang H, Wang B. A hybrid meta-heuristic de/cs algorithm for ucav path planning. Journal of Information and Computational Science, 2012, 5(2012): 4811―4818
37 Layeb A, Boussalia S R. A novel quantum inspired cuckoo search algorithm for bin packing problem. International Journal of Information Technology and Computer Science, 2012, 4(5): 58―67
https://doi.org/10.5815/ijitcs.2012.05.08
38 Babukartik R G, Dhavachelvan P. Hybrid algorithm using the advantage of aco and cuckoo search for job scheduling. International Journal of Information Technology Convergence and Services, 2012, 2(4): 25―34
https://doi.org/10.5121/ijitcs.2012.2403
39 Hu X X, Yin Y L. Cooperative co-evolutionary cuckoo search algorithm for continuous function optimization problems. Pattern Recognition and Aritificial Intelligence, 2013, 26(11): 1041―1049
40 Zheng H Q, Zhou Y Q. A cooperative coevolutionary cuckoo search algorithm for optimization problem. Journal of Applied Mathematics, 2013
https://doi.org/10.1155/2013/912056
41 Walton S, Hassan O, Morgan K, Brown M R. Modified cuckoo search: a new gradient free optimisation algorithm. Chaos, Solitons and Fractals, 2011, 44(9): 710―718
https://doi.org/10.1016/j.chaos.2011.06.004
42 Tuba M, Subotic M, Stanarevic N. Modified cuckoo search algorithm for unconstrained optimization problems. In: Proceedings of the 5th European Conference on European Computing Conference, 2011, 263―268
43 Mishra S K. Global optimization of some difficult benchmark functions by host-parasite co-evolutionary algorithm. Economics Bulletin, 2013, 33(1): 1―18
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Minqi ZHOU, Rong ZHANG, Weining QIAN, Aoying ZHOU. Distribution-free data density estimation in large-scale networks[J]. Front. Comput. Sci., 2018, 12(6): 1220-1240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed