Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (3) : 383-391    https://doi.org/10.1007/s11704-015-4182-7
RESEARCH ARTICLE
Efficient image representation for object recognition via pivots selection
Bojun XIE1,2,Yi LIU1,*(),Hui ZHANG1,2,Jian YU1
1. Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
2. Key Lab of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding 071000, China
 Download: PDF(420 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Patch-level features are essential for achieving good performance in computer vision tasks. Besides wellknown pre-defined patch-level descriptors such as scaleinvariant feature transform (SIFT) and histogram of oriented gradient (HOG), the kernel descriptor (KD) method [1] offers a new way to “grow-up” features from a match-kernel defined over image patch pairs using kernel principal component analysis (KPCA) and yields impressive results.

In this paper, we present efficient kernel descriptor (EKD) and efficient hierarchical kernel descriptor (EHKD), which are built upon incomplete Cholesky decomposition. EKD automatically selects a small number of pivot features for generating patch-level features to achieve better computational efficiency. EHKD recursively applies EKD to form image-level features layer-by-layer. Perhaps due to parsimony, we find surprisingly that the EKD and EHKD approaches achieved competitive results on several public datasets compared with other state-of-the-art methods, at an improved efficiency over KD.

Keywords efficient kernel descriptor      efficient hierarchical kernel descriptor      incomplete Cholesky decomposition      patch-level features      image-level features     
Corresponding Author(s): Yi LIU   
Issue Date: 18 May 2015
 Cite this article:   
Bojun XIE,Yi LIU,Hui ZHANG, et al. Efficient image representation for object recognition via pivots selection[J]. Front. Comput. Sci., 2015, 9(3): 383-391.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4182-7
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I3/383
1 Bo L F, Ren X F, Fox D. Kernel descriptor for visual recognition. In: Proceedings of the Annual Conference on Neural Information Processing Systems. 2010, 244-252
2 Bosch A, Munōz X, Marti R. Which is the best way to organize/classify images by content? Image and Vision Computing, 2007, 25(6): 778-791
https://doi.org/10.1016/j.imavis.2006.07.015
3 Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
4 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2005, 886-893
https://doi.org/10.1109/cvpr.2005.177
5 Vogel J, Schiele B. Semantic modeling of natural scenes for contentbased image retrieval. International Journal of Computer Vision, 2007, 72(2): 133-157
https://doi.org/10.1007/s11263-006-8614-1
6 Li F F, Perona P. A bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2005, 524-531
7 Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2006, 2169-2178
https://doi.org/10.1109/cvpr.2006.68
8 Bo L F, Sminchisescu C. Efficient match kernel between sets of features for visual recognition. In: Proceedings of the Annual Conference on Neural Information Processing Systems. 2009, 135-143
9 Sch?lkopf B, Smola A, Müller K. Nonlinear component analysis as a kernel eigenvalue problem. Neurocomputing, 1998, 10(5): 1299-1319
https://doi.org/10.1162/089976698300017467
10 Xie B J, Liu Y, Zhang H, Yu J. Efficient kernel descriptor for image categorization via pivots selection. In: Proceedings of the IEEE International Conference on Image Processing. 2013, 3479-3483
https://doi.org/10.1109/icip.2013.6738718
11 Wang P, Wang J D, Zeng G, Xu W W, Zha H B, Li S P. Supervised kernel descriptors for visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2858-2865
https://doi.org/10.1109/cvpr.2013.368
12 LeCun Y, Huang F J, Bottou L. Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2004, 97-104
https://doi.org/10.1109/cvpr.2004.1315150
13 Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554
https://doi.org/10.1162/neco.2006.18.7.1527
14 Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507
https://doi.org/10.1126/science.1127647
15 Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Annual Conference on Neural Information Processing Systems. 2012, 1106-1114
16 Bo L F, Lai K, Ren X F, Fox D. Object recognition with hierarchical kernel descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1729-1736
https://doi.org/10.1109/cvpr.2011.5995719
17 Fine S, Scheinberg K. Efficient svm training using low-rank kernel representation. Journal of Machine Learning Research, 2001, 2: 243-264
18 Bach F R, Jordan M I. Kernel independent component analysis. Journal of Machine Learning Research, 2002, 3: 1-48
19 Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145-175
https://doi.org/10.1023/A:1011139631724
20 Li F F, Fergus R, Perona P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 2007, 106(1): 59-70
https://doi.org/10.1016/j.cviu.2005.09.012
21 Li L J, Li F F. What, where and who? Classifying events by scene and object recognition. In: Proceedings of the IEEE International Conference on Computer Vision. 2007, 1-8
https://doi.org/10.1109/iccv.2007.4408872
22 Quattoni A, Torralba A. Recognizing indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 413-420
https://doi.org/10.1109/cvpr.2009.5206537
23 Torralba A, Fergus R, Freeman W. 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1958-1970
https://doi.org/10.1109/TPAMI.2008.128
24 Fan R E, Chang KW, Hsieh C J, Wang X R, Lin C J. Liblinear: a library for large linear classification. Journal of Machine Learning Research, 2008, 9: 1871-1874
25 Shabou A, Borgne H L. Locality-constrained and spatially regularized coding for scene categorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 3618-3625
https://doi.org/10.1109/cvpr.2012.6248107
26 Wang J J, Yang J C, Yu K, Lv F J, Huang T, Gong Y H. Localityconstrained linear coding for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 3360-3367
27 Jia Y Q, Huang C, Darrell T. Beyond spatial pyramids: receptive field learning for pooled image features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 3370-3377
28 Boiman O, Shechtman E, Irani M. In defense of nearest-neighbor based image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1-8
https://doi.org/10.1109/cvpr.2008.4587598
29 Liu L Q, Wang L, Liu X W. In defense of soft-assignment coding. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 2486-2493
30 Zhu J, Li L J, Li F F, Xing E. Large margin learning of upstream scene understanding models. In: Proceedings of the Annual Conference on Neural Information Processing Systems. 2010, 2586-2594
31 Wu J, Rehg J. Centrist: a visual descriptor for scene categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1489-1501
https://doi.org/10.1109/TPAMI.2010.224
32 Li L J, Su H, Xing E, Li F F. Object bank: a high-level image representation for scene classification & semantic feature sparsification. In: Proceedings of the Annual Conference on Neural Information Processing Systems. 2010, 1378-1386
33 Pandey M, Lazebnik S. Scene recognition and weakly supervised object localization with deformable part-based models. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 1307-1314
https://doi.org/10.1109/iccv.2011.6126383
34 Singh S, Gupta A, Efros A A. Unsupervised discovery of mid-level discriminative patches. In: Proceedings of the European conference on Computer Vision. 2012, 73-86
https://doi.org/10.1007/978-3-642-33709-3_6
35 Ranzato M, Hinton G. Modeling pixel means and covariances using factorized third-order boltzmann machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2551-2558
https://doi.org/10.1109/cvpr.2010.5539962
36 Le Q, Ngiam J, Chia Z C, Koh P, Ng A. Tiled convolutional neural networks. In: Proceedings of the Annual Conference on Neural Information Processing Systems. 2010, 1279-1287
37 Yu K, Zhang T. Improved local coordinate coding using local tangents. In: Proceedings of International Conference on Machine Learning. 2010, 1215-1222
38 Coates A, Lee H, Ng A. An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of International Conference on Artificial Intelligence and Statistics. 2011, 215-223
[1] Supplementary Material-Highlights in 3-page ppt
Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed