Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (1) : 167-188    https://doi.org/10.1007/s11704-015-4246-3
REVIEW ARTICLE
Visual object tracking—classical and contemporary approaches
Ahmad ALI1,Abdul JALIL1,Jianwei NIU2,*(),Xiaoke ZHAO2,Saima RATHORE1,Javed AHMED3,Muhammad AKSAM IFTIKHAR4
1. Department of Computer and Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Islamabad 44000, Pakistan
2. State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
3. Department of Electrical (Telecom) Engineering, NUST Military College of Signals, Islamabad 44000, Pakistan
4. COMSATS Institute of Information Technology, Lahore 54000, Pakistan
 Download: PDF(768 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Visual object tracking (VOT) is an important subfield of computer vision. It has widespread application domains,and has been considered as an important part of surveillance and security system. VOA facilitates finding the position of target in image coordinates of video frames.While doing this, VOA also faces many challenges such as noise, clutter, occlusion, rapid change in object appearances, highly maneuvered (complex) object motion, illumination changes. In recent years, VOT has made significant progress due to availability of low-cost high-quality video cameras as well as fast computational resources, and many modern techniques have been proposed to handle the challenges faced by VOT.This article introduces the readers to 1) VOT and its applications in other domains, 2) different issues which arise in it, 3) various classical as well as contemporary approaches for object tracking, 4) evaluation methodologies for VOT, and 5) online resources, i.e., annotated datasets and source code available for various tracking techniques.

Keywords visual object tracking      computer vision      image processing      point tracking      kernel tracking      silhouette tracking     
Corresponding Author(s): Jianwei NIU   
Just Accepted Date: 10 July 2015   Issue Date: 06 January 2016
 Cite this article:   
Ahmad ALI,Abdul JALIL,Jianwei NIU, et al. Visual object tracking—classical and contemporary approaches[J]. Front. Comput. Sci., 2016, 10(1): 167-188.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4246-3
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I1/167
1 Ta D N, Chen WC, Gelfand N, Pulli K. Surftrac: efficient tracking and continuous object recognition using local feature descriptors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2009, 2937–2944
2 Skrypnyk I, Lowe D G. Scene modelling, recognition and tracking with invariant image features. In: Proceedings of IEEE and ACM International Symposium on Mixed and Augmented Reality. 2004, 110–119
https://doi.org/10.1109/ISMAR.2004.53
3 Chau D P, Bremond F, Thonnat M. Object tracking in videos: approaches and issues. 2013, arXiv preprint arXiv: 1304.5212
4 Ko T. A survey on behavior analysis in video surveillance for homeland security applications. In: Proceedings of the 37th IEEE Applied Imagery Pattern Recognition Workshop. 2008, 1–8
https://doi.org/10.1109/aipr.2008.4906450
5 Ess A, Schindler K, Leibe B, Van Gool L. Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 2010, 29: 1707–1725
https://doi.org/10.1177/0278364910365417
6 Mistry P, Maes P. SixthSense: a wearable gestural interface. In: Proceedings of ACM SIGGRAPH ASIA 2009 Sketches. 2009, 11
https://doi.org/10.1145/1667146.1667160
7 Bradski G R. Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 214–219
https://doi.org/10.1109/acv.1998.732882
8 Zhu Z, Ji Q. Eye gaze tracking under natural head movements. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 918–923
9 Kim I, Choi H S, Yi K M, Choi J Y, Kong S G. Intelligent visual surveillance — a survey. International Journal of Control, Automation and Systems, 2010, 8(5): 926–939
https://doi.org/10.1007/s12555-010-0501-4
10 Siemens S. Sistore CX EDS-intelligent video detection system. Technical Report. 2008
11 Collins R, Lipton A, Kanade T, Tolliver E. A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12. 2000
12 Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809–830
https://doi.org/10.1109/34.868683
13 Kettnaker V, Zabih R. Bayesian multi-camera surveillance. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999, 242–259
https://doi.org/10.1109/cvpr.1999.784638
14 Hu W, Tan T, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334–352
https://doi.org/10.1109/TSMCC.2004.829274
15 Collins R T, Lipton A J, Fujiyoshi H, Kanade T. Algorithms for cooperative multisensor surveillance. Proceedings of the IEEE, 2001, 89(10): 1456–1477
https://doi.org/10.1109/5.959341
16 Greiffenhagen M, Comaniciu D, Niemann H, Ramesh V. Design, analysis, and engineering of video monitoring systems: an approach and a case study. Proceedings of the IEEE, 2001, 89(10): 1498–1517
https://doi.org/10.1109/5.959343
17 Kumar R, Sawhney H, Samarasekera S, Hsu S, Tao H, Guo Y, Hanna K, Pope A, Wildes R, Hirvonen D, Hansen M, Burt P. Aerial video surveillance and exploitation. Proceedings of the IEEE, 2001, 89(10):1518–1539
https://doi.org/10.1109/5.959344
18 Coifman B, Beymer D, McLauchlan P, Malik J. A real-time computer vision system for vehicle tracking and traffic surveillance. Transporta tion Research Part C: Emerging Technologies, 1998, 6(4): 271–288
https://doi.org/10.1016/S0968-090X(98)00019-9
19 Tai J C, Tseng S T, Lin C P, Song K T. Real-time image tracking for automatic traffic monitoring and enforcement applications. Image and Vision Computing, 2004, 22(6): 485–501
https://doi.org/10.1016/j.imavis.2003.12.001
20 Masoud O, Papanikolopoulos N P. A novel method for tracking and counting pedestrians in real-time using a single camera. IEEE Transactions on Vehicular Technology, 2001, 50(5): 1267–1278
https://doi.org/10.1109/25.950328
21 Papanikolopoulos N P, Khosla P K. Adaptive robotic visual tracking:theory and experiments. IEEE Transactions on Automatic Control, 1993, 38(3): 429–445
https://doi.org/10.1109/9.210141
22 Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent asimo: system overview and integration.In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, 2478–2483
https://doi.org/10.1109/IRDS.2002.1041641
23 Mondragon I F, Campoy P, Correa J F, Mejias L. Visual model feature tracking for UAV control. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing. 2007, 1–6
https://doi.org/10.1109/wisp.2007.4447629
24 Lee J, Huang R, Vaughn A, Xiao X, Hedrick J K, Zennaro M, Sengupta R. Strategies of path-planning for a UAV to track a ground vehicle. In:Proceedings of Annual Autonomous Intelligent Networks and Systems Conference. 2003
25 Handmann U, Kalinkea T, Tzomakas C, Werner M, von Seelen W. Computer vision for driver assistance systems. In: Proceedings of Aerospace/Defense Sensing and Controls. 1998, 136–147
26 Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072
https://doi.org/10.1109/TPAMI.2004.53
27 Ahmed J, Shah M, Miller A, Harper D, Jafri M N. A vision-based system for a UGV to handle a road intersection. In: Proceedings of National Conference on Artificial Intelligence. 2007, 1077
28 Rand D, Kizony R,Weiss P T. The Sony playstation II eyetoy: low-cost virtual reality for use in rehabilitation. Journal of Neurologic Physical Therapy, 2008, 32(4): 153–163
https://doi.org/10.1097/NPT.0b013e31818ee779
29 Wang S, Xiong X, Xu Y, Wang C, Zhang W, Dai X, Zhang D. Facetracking as an augmented input in video games: enhancing presence, role-playing and control. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems. 2006, 1097–1106
https://doi.org/10.1145/1124772.1124936
30 Amini A A, Owen R L, Anandan P, Duncan J. Non-rigid motion models for tracking the left ventricular wall. In: Proceedings of the 12th International Conference on Information Processing in Medical Imaging.1991, 343–357
https://doi.org/10.1007/BFb0033764
31 Vasconcelos M J M, Ventura S M R, Freitas D R S, Tavares J M R S. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images. Institution ofMechanical Engineers,Part H: Journal of Engineering in Medicine, 2010, 224(10): 1153–1163
https://doi.org/10.1243/09544119JEIM767
32 Vasconcelos M J M, Ventura S M R, Freitas D R S, Tavares J M RS. Towards the automatic study of the vocal tract from magnetic resonance images. Journal of Voice: Official Journal of the Voice Foundation,2011, 25: 732–742
https://doi.org/10.1016/j.jvoice.2010.05.002
33 Stauffer C, Grimson W E L. Learning patterns of activity using realtime tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747–757
https://doi.org/10.1109/34.868677
34 Bodor R, Jackson M, Papanikolopoulos N. Vision-based human tracking and activity recognition. In: Proceedings of the 11thMediterranean Conference on Control and Automation. 2003, 18–20
35 Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of International Joint Conference on Artificial Intelligence. 1981, 674–679
36 Fitts J M. Precision correlation tracking via optimal weighting functions.In: Proceedings of the 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. 1979, 280–283
https://doi.org/10.1109/cdc.1979.270181
37 Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13
https://doi.org/10.1145/1177352.1177355
38 Joshi K A, Thakore D G. A survey on moving object detection and tracking in video surveillance system. International Journal of Soft Computing and Engineering, 2012: 2231–2307
39 Yang H, Shao L, Zheng F, Wang L, Song Z. Recent advances and trends in visual tracking: a review. Neurocomputing, 2011, 74(18):3823–3831
https://doi.org/10.1016/j.neucom.2011.07.024
40 Cannons K. A review of visual tracking. Technical Report CSE-2008-07. 2008
41 Geronimo D, Lopez A M, Sappa A D, Graf T. Survey of pedestrian detection for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239–1258
https://doi.org/10.1109/TPAMI.2009.122
42 Ogale N A. A survey of techniques for human detection. Master’s Thesis. University of Maryland, 2006
43 Trucco E, Plakas K. Video tracking: a concise survey. IEEE Journal of Oceanic Engineering, 2006, 31(2): 520–529
https://doi.org/10.1109/JOE.2004.839933
44 Moeslund T B, Hilton A, Krüger V. A survey of advances in visionbased human motion capture and analysis. Computer Vision and Image Understanding, 2006, 104(2): 90–126
https://doi.org/10.1016/j.cviu.2006.08.002
45 Aggarwal J K, Cai Q. Human motion analysis: a review. In: Proceedings of IEEE Nonrigid and Articulated Motion Workshop. 1997, 90–102
https://doi.org/10.1109/NAMW.1997.609859
46 Kang W, Deng F. Research on intelligent visual surveillance for public security. In: Proceedings of IEEE/ACIS International Conference on Computer and Information Science. 2007, 824–829
https://doi.org/10.1109/icis.2007.157
47 Forsyth D A, Arikan O, Ikemoto L. Computational Studies of Human Motion: Tracking and Motion Synthesis. Boston: Now Publishers Inc.2006
48 Zhan B, Monekosso D N, Remagnino P, Velastin S A, Xu L Q. Crowd analysis: a survey. Machine Vision and Applications, 2008, 19(5-6):345–357
https://doi.org/10.1007/s00138-008-0132-4
49 Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188
https://doi.org/10.1109/78.978374
50 Jalal A S, Singh J. The state-of-the-art in visual object tracking. Informatica Slovenia, 2012, 36(3): 227–248
51 Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel A V D. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58
https://doi.org/10.1145/2508037.2508039
52 Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32–40
https://doi.org/10.1109/TIT.1975.1055330
53 Cheng Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790–799
https://doi.org/10.1109/34.400568
54 Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619
https://doi.org/10.1109/34.1000236
55 Comaniciu D, Meer P. Robust analysis of feature spaces: color image segmentation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997, 750–755
https://doi.org/10.1109/CVPR.1997.609410
56 Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 142–149
https://doi.org/10.1109/cvpr.2000.854761
57 Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5): 564–575
https://doi.org/10.1109/TPAMI.2003.1195991
58 Hero A O, Ma B, Michel O J J, Gorman J. Applications of entropic spanning graphs. IEEE Signal Processing Magazine, 2002, 19(5): 85–95
https://doi.org/10.1109/MSP.2002.1028355
59 Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 176–183
60 Beleznai C, Fruhstuck B, Bischof H. Human tracking by fast mean shift mode seeking. Journal of Multimedia, 2006, 1(1): 1–8
https://doi.org/10.4304/jmm.1.1.1-8
61 Beleznai C, Fruhstuck B, Bischof H. Human tracking by mode seeking. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. 2005, 1–6
https://doi.org/10.1109/ispa.2005.195374
62 Beleznai C, Fruhstuck B, Bischof H. Tracking multiple humans by fast mean shift mode seeking. In: Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. 2005,25–32
63 Beleznai C, Fruhstuck B, Bischof H. Detecting humans in groups using a fast mean shift procedure. In: Proceedings of Workshop of the Austrian Association for Pattern Recogniton. 2004, 71–78
64 Beleznai C, Fruhstuck B, Bischof H. Human detection in groups using a fast mean shift procedure. In: Proceedings of International Conference on Image Processing. 2004, 349–352
https://doi.org/10.1109/icip.2004.1418762
65 Zivkovic Z, Krose B. An EM-like algorithm for color-histogram-based object tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 798–803
https://doi.org/10.1109/cvpr.2004.1315113
66 Zhou H, Yuan Y, Zhang Y, Shi C. Non-rigid object tracking in complex scenes. Pattern Recognition Letters, 2009, 30(2): 98–102
https://doi.org/10.1016/j.patrec.2008.02.027
67 Ning J, Zhang L, Zhang D, Wu C. Robust object tracking using joint color-texture histogram. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23: 1245–1263
https://doi.org/10.1142/S0218001409007624
68 Shan C, Tan T,Wei Y. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 2007, 40(7): 1958–1970
https://doi.org/10.1016/j.patcog.2006.12.012
69 Wang X, Liu L, Tang Z. Infrared human tracking with improved mean shift algorithm based on multicue fusion. Journal of Applied Otics,2009, 48(21): 4201–4212
https://doi.org/10.1364/AO.48.004201
70 Shen C, Brooks M J, Van Den Hengel A. Fast global kernel density mode seeking: applications to localization and tracking. IEEE Transactions on Image Processing, 2007, 16(5): 1457–1469
https://doi.org/10.1109/TIP.2007.894233
71 Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 798–805
https://doi.org/10.1109/cvpr.2006.256
72 Jeyakar J, Babu R V, Ramakrishnan K R. Robust object tracking with background-weighted local kernels. Computer Vision and Image Understanding,2008, 112(3):296–309
https://doi.org/10.1016/j.cviu.2008.05.005
73 Khan M I, Ahmed J, Ali A, Masood A. Robust edge-enhanced fragment based normalized correlation tracking in cluttered and occluded imagery. In: Proceedings of Signal Processing, Image Processing and Pattern Recognition. 2009, 169–176
https://doi.org/10.1007/978-3-642-10546-3_21
74 Kalman R E, Bucy R S. New results in linear filtering and prediction theory. Journal of Basic Engineering, 1961, 83: 95–108
https://doi.org/10.1115/1.3658902
75 Brookner E. Tracking and Kalman Filtering Made Easy. New York:Wiley, 1998
https://doi.org/10.1002/0471224197
76 Grewal MS, Andrews A P. Kalman filtering: theory and practice using MATLAB. New York, Chichester, Brisbane: JohnWiley & Sons, 2008
https://doi.org/10.1002/9780470377819
77 Welch G, Bishop G. An introduction of the kalman filter. Technical Report. 2005
78 Asgarizadeh M, Pourghassem H. A robust object tracking synthetic structure using regional mutual information and edge correlation-based tracking algorithm in aerial surveillance application. Signal, Image and Video Processing, 2015, 9(1): 175–189
https://doi.org/10.1007/s11760-013-0431-8
79 Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking. In: Proceedings of International Conference on Image Processing. 2000, 70–73
https://doi.org/10.1109/icip.2000.899297
80 Li Z, Xu C, Li Y. Robust object tracking using mean shift and fast motion estimation. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems. 2007,734–737
81 Li X, Zhang T, Shen X, Sun J. Object tracking using an adaptive kalman filter combined with mean shift. Optical Engineering, 2010,49(2): 020503
https://doi.org/10.1117/1.3327281
82 Ali A, Mirza S M. Object tracking using correlation, kalman filter and fast means shift algorithms. In: Proceedings of International Conference on Emerging Technologies. 2006, 174–178
https://doi.org/10.1109/icet.2006.335916
83 Ahmed J, Jafri M N, Shah M, Akbar M. Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking. Machine Vision and Applications, 2008, 19(1): 1–25
https://doi.org/10.1007/s00138-007-0072-4
84 Boykov Y, Huttenlocher D P. Adaptive bayesian recognition in tracking rigid objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 697–704
https://doi.org/10.1109/cvpr.2000.854942
85 Beymer D, McLauchlan P, Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1997,495–501
https://doi.org/10.1109/CVPR.1997.609371
86 Broida T J, Chellappa R. Estimation of object motion parameters from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, 8(1): 90–99
https://doi.org/10.1109/TPAMI.1986.4767755
87 Gennery D B. Visual tracking of known three-dimensional objects. International Journal of Computer Vision, 1992, 7(3): 243–270
https://doi.org/10.1007/BF00126395
88 Terzopoulos D, Szeliski R. Tracking with kalman snakes. In: Active Vision. Cambridge, MA, USA: MIT Press, 1993, 3–20
89 Blake A, Isard M. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1998
https://doi.org/10.1007/978-1-4471-1555-7
90 Cuevas E V, Zaldivar D, Rojas R. Kalman filter for vision tracking.Technical Report. 2005
91 Jang D S, Choi H I. Active models for tracking moving objects. Pattern Recognition, 2000, 33(7): 1135–1146
https://doi.org/10.1016/S0031-3203(99)00100-4
92 Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using kalman-filtering. In: Proceedings of International Conference on recent Advances in Mechatronics. 1995,193–199
93 Peterfreund N. Robust tracking of position and velocity with kalman snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999, 21(6): 564–569
https://doi.org/10.1109/34.771328
94 Anderson B D O, Moore J B. Optimal Filtering. Mincola: Courier Dover Publications, 2012
95 Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing, 2000, 10(3):197–208
https://doi.org/10.1023/A:1008935410038
96 Isard M, Blake A. Condensation–conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1):5–28
https://doi.org/10.1023/A:1008078328650
97 Rao G M, Satyanarayana C. Visual object target tracking using particle filter: a survey. International Journal of Image, Graphics and Signal Processing, 2013, 5(6): 57–71
https://doi.org/10.5815/ijigsp.2013.06.08
98 Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: Wiley, 1973
99 Gonzalez R C, Woods R E. Digital Image Processing. Upper Saddle River, N.J.: Pearson/Prentice Hall, 2008
100 Kuglin C D, Hines D C. The phase correlation image alignment method. IEEE Conference on Cybernetics and Society, 1975, 163–165
101 Lewis J P. Fast normalized cross-correlation. Vision Interface, 1995,10(1): 120–123
102 Chien S I, Sung S H. Adaptive window method with sizing vectors for reliable correlation-based target tracking. Pattern Recognition, 2000,33(2): 237–249
https://doi.org/10.1016/S0031-3203(99)00056-4
103 Manduchi R, Mian G A. Accuracy analysis for correlation-based image registration algorithms. In: Proceedings of IEEE International Symposium on Circuits and Systems. 1993, 834–837
104 Stone H S, Tao B, McGuire M. Analysis of image registration noise due to rotationally dependent aliasing. Journal of Visual Communication and Image Representation, 2003, 14(2): 114–135
https://doi.org/10.1016/S1047-3203(03)00002-6
105 Stone H S. Fourier-based image registration techniques. Technical Report.2002
106 Foroosh H, Zerubia J B, Berthod M. Extension of phase correlation to subpixel registration. IEEE Transactions on Image Processing, 2002,11(3): 188–200
https://doi.org/10.1109/83.988953
107 Keller Y, Averbuch A, Miller O. Robust phase correlation. In: Proceedings of the 17th International Conference on Pattern Recognition.2004, 740–743
https://doi.org/10.1109/icpr.2004.1334365
108 Ahmed J, Jafri M N. Improved phase correlation matching. In: Proceedings of International Conference on Image and Signal Processing.2008, 128–135
https://doi.org/10.1007/978-3-540-69905-7_15
109 Blackman S S, Popoli R F. Design and Analysis of Modern Tracking Systems. Boston, M A: Artech House, 1999
110 Nixon M S, Aguado A S. Feature Extraction & Image Processing.London: Academic Press, 2008
111 Ali A, Jalil A, Ahmed J, Iftikhar M A, Hussain M. Correlation, kalman filter and adaptive fast mean shift based heuristic approach for robust visual tracking. Signal, Image and Video Processing, 2014: 1–19
112 Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780–785
https://doi.org/10.1109/34.598236
113 Grimson W E L, Stauffer C, Romano R, Lee L. Using adaptive tracking to classify and monitor activities in a site. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1998, 22–29
https://doi.org/10.1109/cvpr.1998.698583
114 Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999
https://doi.org/10.1109/cvpr.1999.784637
115 KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. Video-Based Surveillance Systems. 2002, 135–144
116 Horprasert T, Harwood D, Davis L S. A robust background subtraction and shadow detection. In: Proceedings of Asian Conference on Computer Vision. 1999, 983–988
117 Horprasert T, Harwood D, Davis L S. A statistical approach for realtime robust background subtraction and shadow detection. In: Proceedings of International Conference on Computer Vision. 1999, 1–19
118 Oliver NM, Rosario B, Pentland A P. A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831–843
https://doi.org/10.1109/34.868684
119 Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 8–14
https://doi.org/10.1109/acv.1998.732851
120 Dailey D J, Cathey FW, Pumrin S. An algorithm to estimate mean traffic speed using uncalibrated cameras. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(2): 98–107
https://doi.org/10.1109/6979.880967
121 Dailey D J, Li L. An algorithm to estimate vehicle speed using uncalibrated cameras. In: Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. 1999, 441–446
https://doi.org/10.1109/itsc.1999.821098
122 Horn B K P, Schunck B G. Determining optical flow. Technical Report.1980
123 Black M J, Anandan P. The robust estimation of multiple motions:Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 1996, 63(1): 75–104
https://doi.org/10.1006/cviu.1996.0006
124 Szeliski R, Coughlan J. Spline-based image registration. International Journal of Computer Vision, 1997, 22(3): 199–218
https://doi.org/10.1023/A:1007996332012
125 Shi J, Tomasi C. Good features to track. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1994, 593–600
126 Rangarajan K, Shah M. Establishing motion correspondence. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1991, 103–108
https://doi.org/10.1109/cvpr.1991.139669
127 Papageorgiou C P, Oren M, Poggio T. A general framework for object detection. In: Proceedings of the 6th IEEE International Conference on Computer Vision. 1998, 555–562
https://doi.org/10.1109/iccv.1998.710772
128 Cremers D, Schnorr C. Statistical shape knowledge in variational motion segmentation. Image and Vision Computing, 2003, 21(1): 77–86
https://doi.org/10.1016/S0262-8856(02)00128-2
129 Li B, Chellappa R, Zheng Q, Der S Z. Model-based temporal object verification using video. IEEE Transactions on Image Processing, 2001, 10(6): 897–908
https://doi.org/10.1109/83.923286
130 Bertalmio M, Sapiro G, Randall G. Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(7): 733–737
https://doi.org/10.1109/34.865191
131 Mansouri A R. Region tracking via level set PDEs without motion computation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002, 24(7):947–961
https://doi.org/10.1109/TPAMI.2002.1017621
132 Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619–1632
https://doi.org/10.1109/TPAMI.2010.226
133 Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of British Machine Vision Conference.2006, 1(5): 6
https://doi.org/10.5244/c.20.6
134 Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631–1643
https://doi.org/10.1109/TPAMI.2005.205
135 Santner J, Leistner C, Saffari A, Pock T, Bischof H. Prost: parallel robust online simple tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 723–730
https://doi.org/10.1109/cvpr.2010.5540145
136 Liu X, Yu T. Gradient feature selection for online boosting. In: Proceedings of the 11th IEEE International Conference on Computer Vision.2007, 1–8
https://doi.org/10.1109/iccv.2007.4408912
137 Avidan S. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261–271
https://doi.org/10.1109/TPAMI.2007.35
138 Wang J, Chen X, Gao W. Online selecting discriminative tracking features using particle filter. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1037–1042
139 Kuncheva L I. Combining pattern classifiers: methods and algorithms. IEEE Transactions on Neural Networks, 2007, 18(3): 964–964
https://doi.org/10.1109/TNN.2007.897478
140 Bishop C M. Pattern Recognition and Machine Learning. Springer,2006
141 Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels. In: Proceedings of IEEE International Conference on Computer Vision. Nov 2011, 263–270
142 Stalder S, Grabner H. On-line Boosting Trackers. ETH-Zurich, 2009
143 Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: Proceedings of European Conference on Computer Vision. 2008, 234–247
144 Zeisl B, Leistner C, Saffari A, Bischof H. On-line semi-supervised multiple-instance boosting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1879–1879
145 Saffari A, Leistner C, Godec M, Bischof H. Robust multi-view boosting with priors. In: Proceedings of European Conference on Computer Vision, 2010, 776–789
146 Leistner C, Saffari A, Roth P M, Bischof H. On robustness of on-line boosting—a competitive study. In: Proceedings of IEEE International Conference on Computer Vision Workshops. 2009, 1362–1369
147 Masnadi-Shirazi H, Mahadevan V, Vasconcelos N. On the design of robust classifiers for computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 779–786
148 Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 2013, 46(1): 397–411
149 Williams O, Blake A, Cipolla R. A sparse probabilistic learning algorithm for real-time tracking. In: Proceedings of IEEE International Conference on Computer Vision. 2003, 353–360
150 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. 1995, 1942–1948
151 Eberhart R, Kennedy J. A new optimizer using particle swarm theory.In: Proceedings of the 6th International Symposium onMicroMachine and Human Science. 1995, 39–43
152 Poli R. Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications,2008, 2008: 3
153 Clerc M, Kennedy J. The particle swarm — explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58–73
154 Wachowiak M P, Smolikova R, Zheng Y, Zurada J M, Elmaghraby AS. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 289–301
155 Engelbrecht A P. Computational Intelligence: an Introduction. 2nd ed.New York: John Wiley & Sons, 2007
156 Sedighizadeh D, Masehian E. Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 2009, 1(5): 486–502
157 Zhang X, Hu W, Maybank S, Zhu M. Sequential particle swarm optimization for visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8
158 Zhang X, Hu W, Qu W, Maybank S. Multiple object tracking via species-based particle swarm optimization. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1590–1602
159 Akbari R, Jazi M D, Palhang M. A hybrid method for robust multiple objects tracking in cluttered background. In: Proceedings of the 2nd International Conference on Information & Communication Technologies. 2006, 1562–1567
160 Kwolek B. Multi-object tracking using particle swarm optimization on target interactions. In: Proceedings of Advances in Heuristic Signal Processing and Applications. 2013, 63–78
161 Anton-Canalis L, Hernandez-Tejera M, Sanchez-Nielsen E. Particle swarms as video sequence inhabitants for object tracking in computer vision. In: Proceedings of the 6th International Conference on Intelligent Systems Design and Applications. 2006, 604–609
162 Zheng Y, Meng Y. Adaptive object tracking using particle swarm optimization.In: Proceedings of International Symposium on Computational Intelligence in Robotics and Automation. 2007, 43–48
163 Tawab A M A, Abdelhalim M B, Habib S E D. Efficient multi-feature PSO for fast gray level object-tracking. Applied Soft Computing, 2014,14: 317–337
164 Borra S K, Chaparala S K. Tracking of an object in video stream using a hybrid PSO-FCM and pattern matching. International Journal of Engineering Research and Technology, 2013, 2
165 Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306
166 Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223
167 Wright J, Ma Y, Mairal J, Sapiro G, Huang T S, Yan S. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6): 1031–1044
168 Sapiro G, Mairal J, Wright J, Ma Y, Huang T, Yan S. Sparse representation for computer vision and pattern recognition. Technical Report.2009
169 Yang J, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11):2861–2873
170 Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210–227
171 Mei X, Ling H. Robust visual tracking using l1 minimization. In: Proceedings of IEEE International Conference on Computer Vision. 2009,1436–1443
172 Mei X. Visual tracking and illumination recovery via sparse representation.Dissertation for the Doctoral Degree. University of Maryland,2009
173 Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259–2272
174 Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C. Robust and fast collaborative tracking with two stage sparse optimization. In: Proceedings of European Conference on Computer Vision. 2010, 624–637
175 Liu J, Huang J, Yang L, Kulikowski C. Robust tracking using local sparse appearance model and k-selection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1313–1320
176 Zhong W, Lu H, Yang H M. Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845
177 Jia X, Lu X, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
178 Zhang K, Zhang L, Yang M H. Real-time compressive tracking. In:Proceedings of European Conference on Computer Vision. 2012, 864–877
179 Zhang S, Yao H, Sun X, Lu X. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7):1772–1788
180 Oliva A, Torralba A. The role of context in object recognition. Trends in Cognitive Sciences, 2007, 11(12): 520–527
181 Divvala S K, Hoiem D, Hays J H, Efros A A, Hebert M. An empirical study of context in object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1271–1278
182 Yang M, Wu Y, Hua G. Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7):1195–1209
183 Li Y, Nevatia R. Key object driven multi-category object recognition,localization and tracking using spatio-temporal context. In: Proceedings of Europian Conference on Computer Vision. 2008, 409–422
184 Nguyen H T, Ji Q, Smeulders A W M. Spatio-temporal context for robust multitarget tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 52–64
185 Wen L, Cai Z, Lei Z, Yi D, Li S. Robust online learned spatio-temporal context model for visual tracking. IEEE Transactions on Image Processing,2014, 23(2): 785–796
186 Grabner H, Matas J, Van Gool L, Cattin P. Tracking the invisible:Learning where the object might be. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1285–1292
187 Wu Z, Hristov N I, Hedrick T L, Kunz T H, Betke M. Tracking a large number of objects from multiple views. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1546–1553
188 Sugimura D, Kitani KM, Okabe T, Sato Y, Sugimoto A. Using individuality to track individuals: clustering individual trajectories in crowds using local appearance and frequency trait. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1467–1474
189 Ali S, Shah M. Floor fields for tracking in high density crowd scenes.Lecture Notes in Computer Science. 2008, 5303: 1–14
190 Zhao T, Nevatia R. Tracking multiple humans in crowded environment.In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 406–413
191 Betke M, Hirsh D E, Bagchi A, Hristov N I, Makris N C, Kunz TH. Tracking large variable numbers of objects in clutter. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2007, 1–8
192 Li Y, Huang C, Nevatia R. Learning to associate: Hybridboosted multitarget tracker for crowded scene. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2953–2960
193 Wu B, Nevatia R. Tracking of multiple, partially occluded humans based on static body part detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 951–958
194 Brostow G J, Cipolla R. Unsupervised Bayesian detection of independent motion in crowds. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 594–601
195 Pellegrini S, Ess A, Schindler K, Van Gool L. You’ll never walk alone:Modeling social behavior for multi-target tracking. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 261–268
196 Rodriguez M, Ali S, Kanade T. Tracking in unstructured crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1389–1396
197 Kratz L, Nishino K. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 693–700
198 Rodriguez M, Sivic J, Laptev I, Audibert J Y. Data-driven crowd analysis in videos. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 1235–1242
199 Idrees H, Warner N, Shah M. Tracking in dense crowds using prominence and neighborhood motion concurrence. Image and Vision Computing,2014, 32(1): 14–26
200 Zhang L, Maaten v. d L. Structure preserving object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2013, 1838–1845
201 Zhu F, Wang X, Yu N. Crowd tracking with dynamic evolution of group structures. In: Proceedings of the 13th European Conference on Computer Vision–ECCV. 2014, 139–154
202 Gao Y, Ji R, Zhang L, Hauptmann A. Symbiotic tracker ensemble towards a unified tracking framework. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(7): 1122–1131
203 Zhong B, Yao H, Chen S, Ji R, Chin T J, Wang H. Visual tracking via weakly supervised learning from multiple imperfect oracles. Pattern Recognition, 2014, 47(3): 1395–1410
204 Yao A, Lin X, Wang G, Yu S. A compact association of particle filtering and kernel based object tracking. Pattern Recognition, 2012, 45(7):2584–2597
205 Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision—ECCV 2012. 2012,702–715
206 Wu Y, Lim J, Yang MH. Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2013, 2411–2418
207 Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008,77(1-3): 125–141
208 Kwon J, Lee K M. Visual tracking decomposition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010,1269–1276
209 Wang Y, Qi Y, Li Y. Memory-based multiagent coevolution modeling for robust moving object tracking. The Scientific World Journal, 2013,2013
210 Wang Y, Qi Y. Memory-based cognitive modeling for robust object extraction and tracking. Applied Intelligence, 2013, 39(3): 614–629
211 Smith K, Ba S O, Odobez J M, Gatica-Perez D. Tracking the visual focus of attention for a varying number of wandering people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(7): 1212–1229
[1] Supplementary Material-Highlights in 3-page ppt Download
[1] Xuan LI, Jin LI, Siuming YIU, Chongzhi GAO, Jinbo XIONG. Privacy-preserving edge-assisted image retrieval and classification in IoT[J]. Front. Comput. Sci., 2019, 13(5): 1136-1147.
[2] Fei YAN, Sihao JIAO, Abdullah M. ILIYASU, Zhengang JIANG. Chromatic framework for quantum movies and applications in creating montages[J]. Front. Comput. Sci., 2018, 12(4): 736-748.
[3] Hui LI,Yun LIU,Shengwu XIONG,Lin WANG. Pedestrian detection algorithm based on video sequences and laser point cloud[J]. Front. Comput. Sci., 2015, 9(3): 402-414.
[4] Xudong ZHU, Zhijing LIU. Human behavior clustering for anomaly detection[J]. Front Comput Sci Chin, 2011, 5(3): 279-289.
[5] WU Wenjun, Wen-Tsun Wu, GAO Xiaoshan. Mathematics mechanization and applications after thirty years[J]. Front. Comput. Sci., 2007, 1(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed