Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (2) : 322-330    https://doi.org/10.1007/s11704-015-4286-8
RESEARCH ARTICLE
Virtual machine selection and placement for dynamic consolidation in Cloud computing environment
Xiong FU(),Chen ZHOU
School of Computer Science and Technology, Nanjing University of Posts & Telecommunications, Nanjing 210003, China
 Download: PDF(542 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dynamic consolidation of virtual machines (VMs) in a data center is an effective way to reduce the energy consumption and improve physical resource utilization. Determining which VMs should be migrated from an overloaded host directly influences the VM migration time and increases energy consumption for the whole data center, and can cause the service level of agreement (SLA), delivered by providers and users, to be violated. So when designing a VM selection policy, we not only consider CPU utilization, but also define a variable that represents the degree of resource satisfaction to select the VMs. In addition, we propose a novel VM placement policy that prefers placing a migratable VM on a host that has the minimum correlation coefficient. The bigger correlation coefficient a host has, the greater the influence will be on VMs located on that host after the migration. Using CloudSim, we run simulations whose results let draw us to conclude that the policies we propose in this paper perform better than existing policies in terms of energy consumption, VM migration time, and SLA violation percentage.

Keywords cloud computing      dynamic consolidation      VM migration      energy consumption     
Corresponding Author(s): Xiong FU   
Just Accepted Date: 31 December 2014   Issue Date: 07 April 2015
 Cite this article:   
Chen ZHOU,Xiong FU. Virtual machine selection and placement for dynamic consolidation in Cloud computing environment[J]. Front. Comput. Sci., 2015, 9(2): 322-330.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4286-8
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I2/322
1 Zhu X, Young D, Watson B J, Wang Z, Rolia J, Singhal S, McKee B, Hyser C, Gmach D, Gardner R, Christian T, Cherkasova L. 1000 islands: an integrated approach to resource management for virtualized data centers. Cluster Computing, 2009, 12(1): 45-57
https://doi.org/10.1007/s10586-008-0067-6
2 Greenberg A, Hamilton J, Maltz D A, Patel P. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Computer Communication Review, 2008, 39(1): 68-73
https://doi.org/10.1145/1496091.1496103
3 Dong J, Jin X, Wang H, Li Y, Zhang P, Cheng S. Energy-saving virtual machine placement in Cloud data centers. In: Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 2013, 618-624
4 Barroso L A, H?lzle U. The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synthesis lectures on computer architecture, 2009, 4(1): 1-108
5 Nathuji R, Schwan K. Virtualpower: coordinated power management in virtualized enterprise systems. ACM SIGOPS Operating Systems Review, 2007, 41(6): 265-278
https://doi.org/10.1145/1323293.1294287
6 Kusic D, Kephart J, Hanson J, Kandasamy N, Jiang G. Power and performance management of virtualized computing environments via lookahead control. Cluster Computing, 2009, 12(1): 1-15
https://doi.org/10.1007/s10586-008-0070-y
7 Verma A, Ahuja P, Neogi A. pMapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware. 2008, 243-264
https://doi.org/10.1007/978-3-540-89856-6_13
8 Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation for cloud computing. In: Proceedings of USENIX Workshop on Power Aware Computing and Systems in conjunction with OSDI. 2008, 1-5
9 Zhu X, Young D, Watson B J, Wang Z, Rolia J, Singhal S, McKee, Hyser C, Gmach D, Gardner T, Cherkasova L. 1000 Islands: integrated capacity and workload management for the next generation data center. In: Proceedings of the 5th International Conference Autonomic Computing (ICAC). 2008, 172-181
10 Gmach D, Rolia J, Cherkasova L, Belrose G, Turicchi T, Kemper A. An integrated approach to resource pool management: policies, efficiency and quality metrics. In: Proceedings of IEEE 38th International Conference Dependable Systems and Networks (DSN). 2008, 326-335
11 Beloglazov A, Buyya R. Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in Cloud data centers. In: Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science. 2010: 4
12 Calheiros R N, Buyya R, Beloglazov A, Rose CAFD, Buyya R. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 2011, 41(1): 23-50
https://doi.org/10.1002/spe.995
13 Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive Heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurrency and Computation: Practice and Experience, 2012, 24(12): 1397-1420
https://doi.org/10.1002/cpe.1867
14 Cao Z, Dong S. Dynamic VM consolidation for energy-aware and SLA violation reduction in cloud Computing. In: Proceedings of the 13th International Conference on Parallel and Distributed Computing, Applications and Technologies. 2012, 363-369
https://doi.org/10.1109/PDCAT.2012.68
15 Bobroff N, Kochut A, Beaty K. Dynamic placement of virtual machines for managing SLA violations. In: Proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network Management. 2007, 119-128
https://doi.org/10.1109/INM.2007.374776
16 Wood T, Shenoy P, Venkataramani A, Yousif M. Black-box and graybox strategies for virtual machine migration. In: Proceedings of the 4th USENIX Symposium on Networked Systems Design and Implementation. 2007, 229-242
17 Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. In: Proceedings of the 34th Annual International Symposium on Computer Architecture. 2007, 35(2): 13-23
https://doi.org/10.1145/1250662.1250665
18 Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012, 28(5): 755-768
https://doi.org/10.1016/j.future.2011.04.017
19 Xu F, Liu F, Liu L, Jin H, Li B. Iaware: making live migration of virtual machines interference-aware in the cloud. IEEE Transactions on Computers, 2014, 63(12): 3012-3025
https://doi.org/10.1109/TC.2013.185
20 Song Y, Wang H, Li Y, Feng B, Sun Y. Multi-tiered on-demand resource scheduling for VM-based data center. In: Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. 2009, 148-155
https://doi.org/10.1109/CCGRID.2009.11
21 Calheiros R N, Ranjan R, De Rose C A F, Buyya R. CloudSim: A novel framework for modeling and simulation of cloud computing infrastructures and services. arXiv preprint arXiv, 2009: 0903.2525
22 Fan X, Weber WD, Barroso L A. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007, 35(2): 13-23
https://doi.org/10.1145/1273440.1250665
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Wei ZHENG, Ying WU, Xiaoxue WU, Chen FENG, Yulei SUI, Xiapu LUO, Yajin ZHOU. A survey of Intel SGX and its applications[J]. Front. Comput. Sci., 2021, 15(3): 153808-.
[2] Najme MANSOURI, Mohammad Masoud JAVIDI, Behnam Mohammad Hasani ZADE. Hierarchical data replication strategy to improve performance in cloud computing[J]. Front. Comput. Sci., 2021, 15(2): 152501-.
[3] Jiayang LIU, Jingguo BI, Mu LI. Secure outsourcing of large matrix determinant computation[J]. Front. Comput. Sci., 2020, 14(6): 146807-.
[4] Xiaodong MENG, Chentao WU, Minyi GUO, Long ZHENG, Jingyu ZHANG. PAM: an efficient power-aware multilevel cache policy to reduce energy consumption of storage systems[J]. Front. Comput. Sci., 2019, 13(4): 850-863.
[5] Meysam VAKILI, Neda JAHANGIRI, Mohsen SHARIFI. Cloud service selection using cloud service brokers: approaches and challenges[J]. Front. Comput. Sci., 2019, 13(3): 599-617.
[6] Qiang LIU, Xiaoshe DONG, Heng CHEN, Yinfeng WANG. IncPregel: an incremental graph parallel computation model[J]. Front. Comput. Sci., 2018, 12(6): 1076-1089.
[7] Fei TIAN, Tao QIN, Tie-Yan LIU. Computational pricing in Internet era[J]. Front. Comput. Sci., 2018, 12(1): 40-54.
[8] Xiong FU, Juzhou CHEN, Song DENG, Junchang WANG, Lin ZHANG. Layered virtual machine migration algorithm for network resource balancing in cloud computing[J]. Front. Comput. Sci., 2018, 12(1): 75-85.
[9] Najme MANSOURI. Adaptive data replication strategy in cloud computing for performance improvement[J]. Front. Comput. Sci., 2016, 10(5): 925-935.
[10] Haibao CHEN,Song WU,Hai JIN,Wenguang CHEN,Jidong ZHAI,Yingwei LUO,Xiaolin WANG. A survey of cloud resource management for complex engineering applications[J]. Front. Comput. Sci., 2016, 10(3): 447-461.
[11] Zhaoning ZHANG,Dongsheng LI,Kui WU. Large-scale virtual machines provisioning in clouds:challenges and approaches[J]. Front. Comput. Sci., 2016, 10(1): 2-18.
[12] Bing YU,Yanni HAN,Hanning YUAN,Xu ZHOU,Zhen XU. A cost-effective scheme supporting adaptive service migration in cloud data center[J]. Front. Comput. Sci., 2015, 9(6): 875-886.
[13] Solomon Guadie WORKU,Chunxiang XU,Jining ZHAO. Cloud data auditing with designated verifier[J]. Front. Comput. Sci., 2014, 8(3): 503-512.
[14] Heng WU, Wenbo ZHANG, Jianhua ZHANG, Jun WEI, Tao HUANG. A benefit-aware on-demand provisioning approach for multi-tier applications in cloud computing[J]. Front Comput Sci, 2013, 7(4): 459-474.
[15] Haibo MI, Huaimin WANG, Yangfan ZHOU, Michael Rung-Tsong LYU, Hua CAI, Gang YIN. An online service-oriented performance profiling tool for cloud computing systems[J]. Front Comput Sci, 2013, 7(3): 431-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed