Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (1) : 147-156    https://doi.org/10.1007/s11704-015-4353-1
RESEARCH ARTICLE
Low lighting image enhancement using local maximum color value prior
Xuan DONG(),Jiangtao WEN
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
 Download: PDF(665 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the problem of low lighting image enhancement.Previous enhancement methods for images under low lighting conditions usually fail to consider the factor of image degradation during image formation. As a result,the lost contrast could not be recovered after enhancement.This paper will adaptively recover the contrast and adjust the exposure for low lighting images. Our first contribution is the modeling of image degradation in low lighting conditions.Then, the local maximum color value prior is proposed, i.e., in most regions of well exposed images, the local maximum color value of a pixel will be very high. By combining the image degradation model and local maximum color value prior, we propose to recover the un-degraded images under low lighting conditions. Last, an adaptive exposure adjustment module is proposed to obtain the final result.We show that our approach enables better enhancement comparing with popular image editing tools and academic algorithms.

Keywords low lighting enhancement      image degradation model     
Corresponding Author(s): Xuan DONG   
Just Accepted Date: 31 December 2014   Issue Date: 06 January 2016
 Cite this article:   
Xuan DONG,Jiangtao WEN. Low lighting image enhancement using local maximum color value prior[J]. Front. Comput. Sci., 2016, 10(1): 147-156.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4353-1
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I1/147
1 Blanco M, Jonathan H M, Dingus T A. Evaluating new technologies to enhance night vision by looking at detection and recognition distances of non-motorists and objects. In: Proceedings of Human Factors and Ergonomics Society. 2001, 1612–1616
https://doi.org/10.1177/154193120104502311
2 Tsimhoni O, Bargman J, Minoda T, Flannagan M J. Pedestrian Detection with Near and Far Infrared Night Vision Enhancement. Technical Report, University of Michigan, Transportation Research Institute.2004, 113–128
3 Tao L, Ngo H, Zhang M, Livingston A, Asari V. A multi-sensor image fusion and enhancement system for assisting drivers in poor lighting conditions. In: Proceedings of IEEE Conference on Applied Imagery and Pattern Recognition Workshop. 2005, 106–113
4 Ngo H, Tao L, Zhang M, Livingston A, Asari V. A visibility improvement system for low vision drivers by nonlinear enhancement of fused visible and infrared video. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2005, 25–32
5 Bennett E P, Mason J L, McMillan L. Multispectral bilateral video fusion.IEEE Transactions on Image Processing, 2007, 16(5): 1185–1194
https://doi.org/10.1109/TIP.2007.894236
6 Malm H, Oskarsson M, Warrant E, Clarberg P, Hasselgren J, Lejdfors C. Adaptive enhancement and noise reduction in very low light-level video. In: Proceedings of IEEE International Conference on Computer Vision. 2007, 1–8
https://doi.org/10.1109/iccv.2007.4409007
7 Bennett E P, Mcmillan L. Video enhancement using per-pixel virtual exposures. In: Proceedings of ACM SIGGRAPH 2005 Papers. 2005,845–852
https://doi.org/10.1145/1186822.1073272
8 Dong X, Pang Y, Wen J. Fast efficient algorithm for enhancement of low lighting video. In: Proceedings of ACM SIGGRAPH Poster. 2010
https://doi.org/10.1145/1836845.1836920
9 Dong X, Wang G, Pang Y, Li W, Wen J. Fast efficient algorithm for enhancement of low lighting video. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2011, 1–6
10 Zhang X, Shen P, Luo L, Zhang L, Song J. Enhancement and noise reduction of very low light level images. In: Proceedings of IEEE International Conference on Pattern Recognition. 2012, 2034–2037
11 Koschmieder H. Theorie der horizontalen sichtweite. Beitr. Phys. Freien Atm., 1924, 12: 171–181
12 Krishnan D, Fergus R. Dark flash photography. In: Proceedings of 2009 ACM SIGGRAPH Transactions on Graphics. 2009, 1–11
https://doi.org/10.1145/1576246.1531402
13 Agrawal A, Raskar R, Nayar S, Li Y. Removing photography artifacts using gradient projection and flash-exposure sampling. ACM Transactions on Graphics, 2005, 24: 828–835
https://doi.org/10.1145/1073204.1073269
14 Eisemann E, Durand F. Flash photography enhancement via intrinsic relighting. ACM Transactions on Graphics, 2004, 23: 673–678
https://doi.org/10.1145/1015706.1015778
15 Fattal R. Single image dehazing. In: Proceedings of the 2008 ACM SIGGRAPH Conference. 2008, 1–9
https://doi.org/10.1145/1399504.1360671
16 He K, Sun J, Tang X. Single image haze removal using dark channel prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1956–1963
17 Gibson K, Vo D, Nguyen T. An investigation in dehazing compressed images and video. In: Proceedings of IEEE OCEANS. 2010, 1–8
https://doi.org/10.1109/oceans.2010.5664479
18 Tarel J, Hautiere N. Fast visibility restoration from a single color or gray level image. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 2201–2208
https://doi.org/10.1109/iccv.2009.5459251
19 Xie B, Guo F, Cai Z. Universal strategy for surveillance video defogging. Optical Engineering, 2012, 51(10): 1–7
https://doi.org/10.1117/1.OE.51.10.101703
20 He K, Sun J, Tang X. Guided image filtering. Lecture Notes in Computer Science, 2010, 6311: 1–14
https://doi.org/10.1007/978-3-642-15549-9_1
21 Mertens T, Kautz J, Reeth F. V. Exposure fusion. In: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications. 2007, 382–390
https://doi.org/10.1109/PG.2007.17
22 Gelfand N, Adams A, Park S. H, Pulli K. Multi-exposure imaging on mobile devices. In: Proceedings of the 18th International Conference on Multimedia. 2010, 1–4
https://doi.org/10.1145/1873951.1874088
23 Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale Modeling Simulation, 2005, 4, 490–530
https://doi.org/10.1137/040616024
24 Dabov K, F<?Pub Caret?>oi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3D transformdomain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095
https://doi.org/10.1109/TIP.2007.901238
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed