Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (6) : 1103-1117    https://doi.org/10.1007/s11704-015-4472-8
RESEARCH ARTICLE
FSPM-P: towards a general functional-structural plant model for robust and comprehensive model development
Michael HENKE1(),Winfried KURTH1,Gerhard H. BUCK-SORLIN2
1. Department of Ecoinformatics, Biometrics and Forest Growth, University of Göttingen, Göttingen 37077, Germany
2. UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), AGROCAMPUS OUEST Centre d’Angers, Angers 49045, France
 Download: PDF(540 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last decade, functional-structural plant modelling (FSPM) has become a more widely accepted paradigm in crop and tree production, as 3D models for the most important crops have been proposed. Given the wider portfolio of available models, it is now appropriate to enter the next level in FSPM development, by introducing more efficient methods for model development. This includes the consideration of model reuse (by modularisation), combination and comparison, and the enhancement of existing models. To facilitate this process, standards for design and communication need to be defined and established. We present a first step towards an efficient and general, i.e., not speciesspecific FSPM, presently restricted to annual or bi-annual plants, but with the potential for extension and further generalization.

Model structure is hierarchical and object-oriented, with plant organs being the base-level objects and plant individual and canopy the higher-level objects. Modules for the majority of physiological processes are incorporated, more than in other platforms that have a similar aim (e.g., photosynthesis, organ formation and growth). Simulation runs with several general parameter sets adopted from the literature show that the present prototypewas able to reproduce a plausible output range for different crops (rapeseed, barley, etc.) in terms of both the dynamics and final values (at harvest time) of model state variables such as assimilate production, organ biomass, leaf area and architecture.

Keywords functional-structural plant model      prototyping      modelling standards      teaching / learning FSPM      GroIMP     
Corresponding Author(s): Michael HENKE   
Just Accepted Date: 09 October 2015   Online First Date: 08 April 2016    Issue Date: 11 October 2016
 Cite this article:   
Michael HENKE,Winfried KURTH,Gerhard H. BUCK-SORLIN. FSPM-P: towards a general functional-structural plant model for robust and comprehensive model development[J]. Front. Comput. Sci., 2016, 10(6): 1103-1117.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4472-8
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I6/1103
1 Goudriaan J, Van Laar H H. Modelling Potential Crop Growth Processes: Textbook with Exercises. Dordrecht: Kluwer Academic Publishers, 1994
https://doi.org/10.1007/978-94-011-0750-1
2 Lopez G, Favreau R P, Smith C, Costes E, Prusinkiewicz P, DeJong T M. Integrating simulation of architectural development and source-sink behaviour of peach trees by incorporating Markov chains and physiological organ function submodels into L-PEACH. Functional Plant Biology, 2008, 35(10): 761–771
https://doi.org/10.1071/FP08039
3 Allen M T, Prusinkiewicz P, DeJong T M. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytologist, 2005, 166(3): 869–880
https://doi.org/10.1111/j.1469-8137.2005.01348.x
4 Xu L F, Henke M, Zhu J, Kurth W, Buck-Sorlin G H. A rule-based functional-structural model of rice considering source and sink functions. In: Proceedings of the 3rd International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. 2009, 245–252
https://doi.org/10.1109/pma.2009.36
5 Buck-Sorlin G H, de Visser P H B, Sarlikioti V, Burema B S, Heuvelink E, Marcelis L F M, van der Heijden G W A M, Vos J. SIMPLER: an FSPM coupling shoot production, human interaction with the structure, morphogenesis, photosynthesis and light environment in cut-Rose. In: Proceedings of the 6th International Workshop on Functional-Structural Plant Models. 2010, 222–224
6 Groer C, Kniemeyer O, Hemmerling R, Kurth W, Becker H, Buck-Sorlin G H. A dynamic 3D model of rape (Brassica napus L.) computing yield components under variable nitrogen fertilization regimes. In: Proceedings of the 5th International Workshop on Functional- Structural Plant Models. 2007
7 Buck-Sorlin G H, Kniemeyer O, Kurth W. Barley morphology, genetics and hormonal regulation of internode elongation modelled by a relational growth grammar. New Phytologist, 2005, 166(3): 859–867
https://doi.org/10.1111/j.1469-8137.2005.01324.x
8 Buck-Sorlin G H, Kniemeyer O, Kurth W. A grammar-based model of barley including genetic control and metabolic networks. In: Vos J et al., eds. Functional-Structural Plant Modelling in Crop Production. Dordrecht: Springer, 2007, 243–252
https://doi.org/10.1007/1-4020-6034-3_21
9 Buck-Sorlin G H, Hemmerling R, Kniemeyer O, Burema B, Kurth W. A rule-based model of barley morphogenesis, with special respect to shading and gibberellic acid signal transduction. Annals of Botany, 2008, 101(8): 1109–1123
https://doi.org/10.1093/aob/mcm172
10 Barczi J F, Rey H, Caraglio Y, Reffye d P, Barthélémy D, Dong Q X, Fourcaud T. AmapSim: a structural whole-plant simulator based on botanical knowledge and designed to host external functional models. Annals of Botany, 2008, 101(8): 1125–1138
https://doi.org/10.1093/aob/mcm194
11 Hu B G, Reffye P D, Zhao X, Yan H P, Kang M Z. GreenLab: a new methodology towards plant functional-structural model — structural aspect. In: Hu B, Jaeger M, eds. Plant Growth Modeling and Applications. Beijing: TsingHuo University Press and Springer, 2003, 21–35
12 Letort V. Analyse multi-échelle des relations source-puits dans les modèles de développement et croissance des plantes pour l’identification paramétrique. Cas du modèle GreenLab. Dissertation for the Doctoral Degree. Châtenay-Malabry: École Centrale Paris, 2008
13 Breckling B. An individual based model for the study of pattern and process in plant ecology: an application of object oriented programming. EcoSys, 1996, 4: 241–254
14 Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J. LIGNUM: A tree model based on simple structural units. Annals of Botany, 1996, 77(1): 87–98
https://doi.org/10.1006/anbo.1996.0011
15 Kniemeyer O. Design and implementation of a graph grammar based language for functional-structural plant modelling. Dissertation for the Doctoral Degree. Cottbus: Brandenburg University of Technology, 2008
16 Kurth W. Morphological models of plant growth. Possibilities and ecological relevance. Ecological Modelling, 1994, 75: 299–308
https://doi.org/10.1016/0304-3800(94)90027-2
17 Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants. New York: Springer Science & Business Media, 2012
18 Hemmerling R. Extending the programming language XL to combine graph structures with ordinary differential equations. Dissertation for the Doctoral Degree. Göttingen: University of Göttingen, 2012
19 Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin G H. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Functional Plant Biology, 2008, 35(9/10): 739–750
https://doi.org/10.1071/FP08052
20 Van Antwerpen D G. Unbiased physically based rendering on the GPU. Dissertation for the Master Degree. Delft: Delft University of Technology, 2011
21 Veach E. Robust Monte Carlo Methods for Light Transport Simulation. Dissertation for the Doctoral Degree. Palo Alto: Stanford University, 1998
22 Buck-Sorlin G H, Hemmerling R, Vos J, de Visser P H. Modelling of spatial light distribution in the greenhouse: Description of the model. In: Proceedings of the 3rd International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications. 2009, 79–86
23 Evers J B, Vos J, Yin X, Romero P, Van Der Putten P E L, Struik P C. Simulation of wheat growth and development based on organlevel photosynthesis and assimilate allocation. Journal of Experimental Botany, 2010, 61(8): 2203–2216
https://doi.org/10.1093/jxb/erq025
24 Preetham A J, Shirley P, Smits B. A practical analytic model for daylight. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999, 91–100
https://doi.org/10.1145/311535.311545
25 Gijzen H. Development of a simulation model for transpiration and water uptake and an integral growth model. AB-DLO Report 18. 1994
26 Nikolov N T, Massman W J, Schoettle A W. Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants. Ecological Modelling, 1995, 80: 205–235
https://doi.org/10.1016/0304-3800(94)00072-P
27 Müller J, Wernecke P, Diepenbrock W. LEAFC3-N: a nitrogensensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecological Modelling, 2005, 183: 183–210
https://doi.org/10.1016/j.ecolmodel.2004.07.025
28 Müller J, Braune H, Diepenbrock W. Photosynthesis-stomatal conductance model LEAFC3-N: specification for barley, generalised nitrogen relations, and aspects of model application. Functional Plant Biology, 2008, 35: 797–810
https://doi.org/10.1071/FP08088
29 Baldocchi D. An analytical solution for coupled leaf photosynthesis and stomatal conductance models. Tree Physiology, 1994, 14: 1069–1079
https://doi.org/10.1093/treephys/14.7-8-9.1069
30 Kim S H, Lieth J H. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Annals of Botany, 2003, 91(7): 771–781
https://doi.org/10.1093/aob/mcg080
31 Lieth J H, Pasian C C. A simulation model for the growth and development of flowering rose shoots. Scientia Horticulturae, 1991, 46: 109–128
https://doi.org/10.1016/0304-4238(91)90097-I
32 Thornley J H M. A model to describe the partitioning of photosynthate during vegetative plant growth. Annals of Botany, 1969, 33: 419–430
33 Thornley J H M. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. Annals of Botany, 1998, 81(3): 421–430
https://doi.org/10.1006/anbo.1997.0575
34 Johnson I R, Thornley J H M. Dynamic model of the response of a vegetative grass crop to light, temperature and nitrogen. Plant, Cell and Environment, 1985, 8(7): 485–499
https://doi.org/10.1111/j.1365-3040.1985.tb01684.x
35 Marshall B, Biscoe P V. A model for C3 leaves describing the dependence of net photosynthesis on irradiance I. Derivation. Journal of Experimental Botany, 1980, 31(1): 29–39
https://doi.org/10.1093/jxb/31.1.29
36 Marshall B, Biscoe P V. A model for C3 leaves describing the dependence of net photosynthesis on irradiance II. Application to the analysis of flag leaf photosynthesis. Journal of Experimental Botany, 1980, 31(1): 41–48
https://doi.org/10.1093/jxb/31.1.41
37 Rauscher H M, Isebrands J G, Host G E, Dickson R E, Dickmann D I, Crow T R, Michael D A. ECOPHYS: an ecophysiological growth process model for juvenile poplar. Tree Physiology, 1990, 7: 255–281
https://doi.org/10.1093/treephys/7.1-2-3-4.255
38 Yin X Y, Goudriaan J, Lantinga E A, Vos J, Spiertz H J. A flexible sigmoid function of determinate growth. Annals of Botany, 2003, 91(3): 361–371
https://doi.org/10.1093/aob/mcg029
39 Richards F J. A flexible growth function for empirical use. Journal of Experimental Botany, 1959, 29(10): 290–300
https://doi.org/10.1093/jxb/10.2.290
40 Thornley J H M. Growth, maintenance and respiration: a reinterpretation. Annals of Botany, 1977, 41(6): 1191–1203
41 Bertin N, Gary C. Évaluation d’un modèle dynamique de croissance et de développement de la tomate (Lycopersicon esculentum Mill), TOMGRO, pour différents niveaux d’offre et de demande en assimilats. Agronomie, 1993, 13: 395–405
https://doi.org/10.1051/agro:19930504
42 Marcelis L F M. A simulation model for dry matter partitioning in cucumber. Annals of Botany, 1994, 74(1): 43–52
https://doi.org/10.1093/aob/74.1.43
43 Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany, 1996, 47: 1281–1291
https://doi.org/10.1093/jxb/47.Special_Issue.1281
44 Qi R, Ma Y T, Hu B G, de Reffye P, Cournède P H. Optimization of source-sink dynamics in plant growth for ideotype breeding: a case study on maize. Computers and Electronics in Agriculture, 2010, 71(1): 96–105
https://doi.org/10.1016/j.compag.2009.12.008
45 Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C. Open-Alea: a visual programming and component-based software platform for plant modelling. Functional Plant Biology, 2008, 35(10): 751–760
https://doi.org/10.1071/FP08084
46 Vos J, Evers J B, Buck-Sorlin G H, Andrieu B, Chelle M, de Visser P H B. Functional-structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 2010, 61(8): 2101–2115
https://doi.org/10.1093/jxb/erp345
47 Wilson G V. Where’s the real bottleneck in scientific computing? American Scientist, 2006, 94(1): 5–6
https://doi.org/10.1511/2006.57.3473
48 McMaster G S, Hargreaves J N G. CANON in D(esign): composing scales of plant canopies from phytomers to whole-plants using the composite design pattern. NJAS- Wageningen Journal of Life Sciences, 2009, 57(1): 39–51
https://doi.org/10.1016/j.njas.2009.07.008
49 Bouman B A M, Keulen v H, Laar v H H, Rabbinge R. The ‘school of de Wit’ crop growth simulation models: A pedigree and historical overview. Agricultural Systems, 1996, 52(2): 171–198
https://doi.org/10.1016/0308-521X(96)00011-X
50 Spitters C J T. Crop growth models: their usefulness and limitations. ISHS Acta Horticulturae 267: VI Symposium on the Timing of Field Production of Vegetables. 1990, 349–368
https://doi.org/10.17660/actahortic.1990.267.42
51 Van Keulen H, Penning de Vries F W T, Drees E M. A summary model for crop growth. In: Penning de Vries F W T, van Laar H H, eds. Simulation of plant growth and crop production, Wageningen: Centre for Aqricultural Publishing and Documentation, 1982
52 Lithourgidis A S, Dordas C A, Damalas C A, Vlachostergios D N. Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 2011, 5(4): 396–410
53 Ouma G P J. Sustainable horticultural crop production through intercropping: the case of fruits and vegetable crops: a review. Agriculture and Biology Journal of North America, 2010, 1(5): 1098–1105
https://doi.org/10.5251/abjna.2010.1.5.1098.1105
54 Henke M, Sarlikioti V, Kurth W, Buck-Sorlin G H, Pagès L. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model. Plant and Soil, 2014, 385(1): 49–62
https://doi.org/10.1007/s11104-014-2221-7
[1] Daian YUE, Vania JOLOBOFF, Frédéric MALLET. TRAP: trace runtime analysis of properties[J]. Front. Comput. Sci., 2020, 14(3): 143201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed