Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (2) : 332-346    https://doi.org/10.1007/s11704-016-5465-y
RESEARCH ARTICLE
Continuous optimization of interior carving in 3D fabrication
Yue XIE1,Ye YUAN1,Xiang CHEN1(),Changxi ZHENG2,Kun ZHOU1
1. State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
2. Columbia University, New York NY 10027, USA
 Download: PDF(762 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper we propose an optimization framework for interior carving of 3D fabricated shapes. Interior carving is an important technique widely used in industrial and artistic designs to achieve functional purposes by hollowing interior shapes in objects. We formulate such functional purpose as the objective function of an optimization problem whose solution indicates the optimal interior shape. In contrast to previous volumetric methods, we directly represent the boundary of the interior shape as a triangular mesh. We use Eulerian semiderivative to relate the time derivative of the object function to a virtual velocity field and iteratively evolve the interior shape guided by the velocity field with surface tracking. In each iteration, we compute the velocity field guaranteeing the decrease of objective function by solving a linear programming problem. We demonstrate this general framework in a novel application of designing objects floating in fluid and two previously investigated applications, and print various optimized objects to verify its effectiveness.

Keywords computer graphics      3D printing      interior carving      shape optimization      Eulerian semiderivative     
Corresponding Author(s): Xiang CHEN   
Just Accepted Date: 31 March 2016   Online First Date: 31 October 2016    Issue Date: 06 April 2017
 Cite this article:   
Yue XIE,Ye YUAN,Xiang CHEN, et al. Continuous optimization of interior carving in 3D fabrication[J]. Front. Comput. Sci., 2017, 11(2): 332-346.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5465-y
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I2/332
1 Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand: balancing shapes for 3D fabrication. ACM Transactions on Graphics, 2013, 32(4): 81
https://doi.org/10.1145/2461912.2461957
2 Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spin-it: optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics, 2014, 33(4): 96
https://doi.org/10.1145/2601097.2601157
3 Christiansen A N, Schmidt R, Bærentzen J A. Automatic balancing of 3D models. Computer-Aided Design, 2015, 58: 236–241
https://doi.org/10.1016/j.cad.2014.07.009
4 Chen S, Torterelli D. Three-dimensional shape optimization with variational geometry. Structural Optimization, 1997, 13(2): 81–94
https://doi.org/10.1007/BF01199226
5 Braibant V, Fleury C. Shape optimal design using B-splines. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 247–267
https://doi.org/10.1016/0045-7825(84)90132-4
6 Xu D, Ananthasuresh G K. Freeform skeletal shape optimization of compliant mechanisms. Journal of Mechanical Design, 2003, 125(2): 253–261
https://doi.org/10.1115/1.1563634
7 Bendsoe M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202
https://doi.org/10.1007/BF01650949
8 Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227–246
https://doi.org/10.1016/S0045-7825(02)00559-5
9 Zhou M, Pagaldipti N, Thomas H, Shyy Y. An integrated approach to topology, sizing, and shape optimization. Structural and Multidisciplinary Optimization, 2004, 26(5): 308–317
https://doi.org/10.1007/s00158-003-0351-2
10 Haftka R T, Grandhi R V. Structural shape optimizationa——a survey. Computer Methods in Applied Mechanics and Engineering, 1986, 57(1): 91–106
https://doi.org/10.1016/0045-7825(86)90072-1
11 Saitou K, Izui K, Nishiwaki S, Papalambros P. A survey of structural optimization in mechanical product development. Journal of Computing and Information Science in Engineering, 2005, 5(3): 214–226
https://doi.org/10.1115/1.2013290
12 Luo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: partitioning models into 3D-printable parts. ACM Transactions on Graphics, 2012, 31(6)
https://doi.org/10.1145/2366145.2366148
13 Attene M. Shapes in a box: disassembling 3D objects for efficient packing and fabrication. Computer Graphics Forum, 2015
14 Zhou Y B, Sueda S, Matusik W, Shamir A. Boxelization: folding 3D objects into boxes. ACM Transactions on Graphics, 2014, 33(4): 71
https://doi.org/10.1145/2601097.2601173
15 Bickel B, Kaufmann P, Skouras M, Thomaszewski B, Bradley D, Beeler T, Jackson P, Marschner S, Matusik W, Gross M. Physical face cloning. ACM Transactions on Graphics, 2012, 31(4): 118
https://doi.org/10.1145/2185520.2185614
16 Skouras M, Thomaszewski B, Coros S, Bickel B, Gross M. Computational design of actuated deformable characters. ACM Transactions on Graphics, 2013, 32(4): 82
https://doi.org/10.1145/2461912.2461979
17 Chen X, Zheng C, Xu W, Zhou K. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics, 2014, 33(4): 95
https://doi.org/10.1145/2601097.2601189
18 Bächer M, Bickel B, James D L, Pfister H. Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics, 2012, 31(4): 47
https://doi.org/10.1145/2185520.2185543
19 Calì J, Calian D A, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T. 3D-printing of non-assembly, articulated models. ACM Transactions on Graphics, 2012, 31(6): 130
https://doi.org/10.1145/2366145.2366149
20 Zhu L, Xu W, Snyder J, Liu Y, Wang G, Guo B. Motion-guided mechanical toy modeling. ACM Transactions on Graphics, 2012, 31(6): 127
https://doi.org/10.1145/2366145.2366146
21 Coros S, Thomaszewski B, Noris G, Sueda S, Forberg M, Sumner R W, Matusik W, Bickel B. Computational design of mechanical characters. ACM Transactions on Graphics, 2013, 32(4): 83
https://doi.org/10.1145/2461912.2461953
22 Umetani N, Igarashi T, Mitra N J. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics, 2012, 31(4): 86
https://doi.org/10.1145/2185520.2185582
23 Vouga E, Höbinger M, Wallner J, Pottmann H. Design of selfsupporting surfaces. ACM Transactions on Graphics, 2012, 31(4): 87
https://doi.org/10.1145/2185520.2185583
24 Panozzo D, Block P, Sorkine-Hornung O. Designing unreinforced masonry models. ACM Transactions on Graphics, 2013, 32(4): 91
https://doi.org/10.1145/2461912.2461958
25 De Goes F, Alliez P, Owhadi H, Desbrun M. On the equilibrium of simplicial masonry structures. ACM Transactions on Graphics, 2013, 32(4): 93
https://doi.org/10.1145/2461912.2461932
26 Wang W, Wang T Y, Yang Z, Liu L, Tong X, Tong W, Deng J, Chen F, Liu X. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics, 2013, 32(6): 177
https://doi.org/10.1145/2508363.2508382
27 Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, Savoye Y, Tu C, CohenOr D, Chen B. Build-to-last: strength to weight 3D printed objects. ACM Transactions on Graphics, 2014, 33(4): 97
https://doi.org/10.1145/2601097.2601168
28 Stava O, Vanek J, Benes B, Carr N, Mˇech R. Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics, 2012, 31(4): 48
https://doi.org/10.1145/2185520.2185544
29 Zhou Q, Panetta J, Zorin D. Worst-case structural analysis. ACM Transactions on Graphics, 2013, 32(4): 137
https://doi.org/10.1145/2461912.2461967
30 Xie Y, Xu W, Yang Y, Guo X, Zhou K. Agile structural analysis for fabrication-aware shape editing. Computer Aided Geometric Design, 2015, 35: 163–179
https://doi.org/10.1016/j.cagd.2015.03.019
31 Musialski P, Auzinger T, Birsak M, Wimmer M, Kobbelt L. Reducedorder shape optimization using offset surfaces. ACM Transactions on Graphics, 2015, 34(4): 102
https://doi.org/10.1145/2766955
32 Delfour M C, Zolésio J P. Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Philadelphia: Siam, 2011
https://doi.org/10.1137/1.9780898719826
33 Brakke K A. The surface evolver. Experimental Mathematics, 1992, 1(2): 141–165
https://doi.org/10.1080/10586458.1992.10504253
34 Sethian J A. Level set methods and fast marching methods. Journal of Computing and Information Technology, 2003, 11(1): 1–2
35 Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming. Philadelphia: Siam, 1994
https://doi.org/10.1137/1.9781611970791
36 Makhorin A, Andrew O. GLPK (GNU linear programming kit). 2008
37 Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. Surfaces, 2002, 44
38 Brochu T, Bridson R. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing, 2009, 31(4): 2472–2493
https://doi.org/10.1137/080737617
39 Sorkine O, Cohen-Or D. Least-squares meshes. In: Proceedings of Shape Modeling Applications. 2004
https://doi.org/10.1109/smi.2004.1314506
40 McGrail S. Boats of the World: from the Stone Age to Medieval Times. New York: Oxford University Press, 2004
41 Ascher U M, Chin H, Reich S. Stabilization of DAEs and invariant manifolds. Numerische Mathematik, 1994, 67(2): 131–149
https://doi.org/10.1007/s002110050020
42 Mégel J, Kliava J. Metacenter and ship stability. American Journal of Physics, 2010, 78(7): 738–747
https://doi.org/10.1119/1.3285975
43 Byrd R H, Nocedal J, Waltz R A. Knitro: an integrated package for nonlinear optimization. In: Di Pillo G, Roma M, <Eds/>. Large-Scale Nonlinear Optimization, Vol 83. Springer, 2006, 35–59
https://doi.org/10.1007/0-387-30065-1_4
[1] Jin HUANG, Jiong CHEN, Weiwei XU, Hujun BAO. A survey on fast simulation of elastic objects[J]. Front. Comput. Sci., 2019, 13(3): 443-459.
[2] Yu HAN,Guozhu JIA. Optimizing product manufacturability in 3D printing[J]. Front. Comput. Sci., 2017, 11(2): 347-357.
[3] ZHANG Jian, ZHANG Wenhui, ZHAN Naijun, SHEN Yidong, CHEN Haiming, ZHANG Yunquan, WANG Yongji, WU Enhua, WANG Hongan, ZHU Xueyang. Basic research in computer science and software engineering at SKLCS[J]. Front. Comput. Sci., 2008, 2(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed