Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (4) : 777-797    https://doi.org/10.1007/s11704-016-5511-9
RESEARCH ARTICLE
Stable and realistic crack pattern generation using a cracking node method
Juan ZHANG1, Fuqing DUAN1(), Mingquan ZHOU1(), Dongcan JIANG3, Xuesong WANG1, Zhongke WU1, Youliang HUANG1, Guoguang DU1, Shaolong LIU1, Pengbo ZHOU1,2, Xiangang SHANG1
1. College of Computer Science and Technology, Beijing Normal University, Beijing 100875, China
2. College of Art and Communication, Beijing Normal University, Beijing 100875, China
3. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
 Download: PDF(3422 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a method for simulating surface crack patterns appearing in ceramic glaze, glass, wood and mud. It uses a physically and heuristically combined method to model this type of crack pattern. A stress field is defined heuristically over the triangle mesh of an object. Then, a first-order quasi-static cracking node method (CNM) is used to model deformation. A novel combined stress and energy combined crack criterion is employed to address crack initiation and propagation separately according to physics. Meanwhile, a highest-stress-first rule is applied in crack initiation, and a breadth-first rule is applied in crack propagation. Finally, a local stress relaxation step is employed to evolve the stress field and avoid shattering artifacts. Other related issues are also discussed, such as the elimination of quadrature sub-cells, the prevention of parallel cracks and spurious crack procession. Using this method, a variety of crack patterns observed in the real world can be reproduced by changing a set of parameters. Consequently, our method is robust because the computational mesh is independent of dynamic cracks and has no sliver elements. We evaluate the realism of our results by comparing them with photographs of realworld examples. Further, we demonstrate the controllability of our method by varying different parameters.

Keywords crack pattern generation      fracture simulation      physically-based      extend finite element method      crack node method     
Corresponding Author(s): Mingquan ZHOU   
Just Accepted Date: 18 July 2016   Online First Date: 22 September 2017    Issue Date: 14 June 2018
 Cite this article:   
Juan ZHANG,Fuqing DUAN,Mingquan ZHOU, et al. Stable and realistic crack pattern generation using a cracking node method[J]. Front. Comput. Sci., 2018, 12(4): 777-797.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5511-9
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I4/777
1 O’Brien J F, Hodgins J K. Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999, 137–146
https://doi.org/10.1145/311535.311550
2 Pfaff T, Narain R, de Joya J M, O’Brien J F. Adaptive tearing and cracking of thin sheets. ACM Transactions on Graphics, 2014, 33(4): 1–9
https://doi.org/10.1145/2601097.2601132
3 Song J H, Belytschko T. Cracking node method for dynamic fracture with finite elements. International Journal for Numerical Methods in Engineering, 2009, 77(3): 360–385
https://doi.org/10.1002/nme.2415
4 Molino N, Bao Z, Fedkiw R. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics, 2004, 23(3): 385
https://doi.org/10.1145/1015706.1015734
5 Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
6 Melenk J, Babuška I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 289–314
https://doi.org/10.1016/S0045-7825(96)01087-0
7 Rabczuk T. Computational methods for fracture in brittle and quasibrittle solids: state-of-the-art review and future perspectives. Applied Mathematics, 2013, 2013: 1–38
8 Lindblad A, Turkiyyah G. A physically-based framework for real-time haptic cutting and interaction with 3D continuum models. In: Proceedings of ACM Symposium on Solid and Physical Modeling. 2007, 421–429
https://doi.org/10.1145/1236246.1236307
9 Chao S. Simulation for cutting deformable model based on X-FEM. In: Proceedings of International Conference on Intelligent Computing and Cognitive Informatics. 2010, 436–439
https://doi.org/10.1109/ICICCI.2010.99
10 Kaufmann P, Martin S, Botsch M, Grinspun E, Gross M. Enrichment textures for detailed cutting of shells. ACM Transactions on Graphics, 2009, 28(3): 50
https://doi.org/10.1145/1531326.1531356
11 Jeřábková L, Kuhlen T. Stable cutting of deformable objects in virtual environments using XFEM. IEEE Computer Graphics and Applications, 2009, 29(2): 61–71
https://doi.org/10.1109/MCG.2009.32
12 Turkiyyah G M, Karam W B, Ajami Z, Nasri A. Mesh cutting during real-time physical simulation. In: Proceedings of SIAM/ACM Joint Conference on Geometric and Physical Modeling. 2009, 159–168
https://doi.org/10.1145/1629255.1629275
13 Iben H N, O’Brien J F. Generating surface crack patterns. Graphical Models, 2009, 71(6): 198–208
https://doi.org/10.1016/j.gmod.2008.12.005
14 Muguercia L, Bosch C, Patow G. Fracture modeling in computer graphics. Computers Graphics, 2014, 45: 86–100
https://doi.org/10.1016/j.cag.2014.08.006
15 Terzopoulos D, Platt J, Fleischert K. Elastically deformable models. Computer Graphics, 1987, 21(4): 205–214
https://doi.org/10.1145/37402.37427
16 Terzopoulos D, Fleischer K. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. ACM SIGGRAPH Computer Graphics, 1988, 22(4): 269–278
https://doi.org/10.1145/378456.378522
17 Wu J, Westermann R, Dick C. A survey of physically based simulation of cuts in deformable bodies. Computer Graphics Forum, 2015, 34(6): 161–187
https://doi.org/10.1111/cgf.12528
18 Norton A, Turk G, Bacon B, Gerth J, Sweeney P. Animation of fracture by physical modeling. The Visual Computer, 1991, 7(4): 210–219
https://doi.org/10.1007/BF01900837
19 Lloyd B A, Szekely G, Harders M. Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(5): 1081–1094
https://doi.org/10.1109/TVCG.2007.1055
20 Natsupakpong S, Çavu ¸soğlu M C. Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graphical Models, 2010, 72(6): 61–73
https://doi.org/10.1016/j.gmod.2010.10.001
21 Liu T T, Bargteil A W, O’Brien J F, Kavan L. Fast simulation of massspring systems. ACM Transactions on Graphics, 2013, 32(6): 214
https://doi.org/10.1145/2508363.2508406
22 Kot M, Nagahashi H, Szymczak P. Elastic moduli of simple mass spring models. The Visual Computer, 2015, 31(10): 1339–1350
https://doi.org/10.1007/s00371-014-1015-5
23 Levine J A, Bargteil A W, Corsi C, Tessendorf J, Geist R. A peridynamic perspective on spring-mass fracture? In: Proceedings of the ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2014, 47–55
24 O’Brien J F, Bargteil A W, Hodgins J K. Graphical modeling and animation of ductile fracture. ACM Transactions on Graphics, 2002, 21(3): 291–294
https://doi.org/10.1145/566654.566579
25 Bao Z S, Hong J M, Teran J, Fedkiw R. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(2): 370–378
https://doi.org/10.1109/TVCG.2007.39
26 Busaryev O, Dey T K, Wang H. Adaptive fracture simulation of multilayered thin plates. ACM Transactions on Graphics, 2013, 32(4): 52
https://doi.org/10.1145/2461912.2461920
27 Matthias M, Gross M, Müller M. Interactive virtual materials. In: Proceedings of Graphics Interface. 2004, 239–246
28 James D L, Pai D K. Artdefo: accurate real time deformable objects. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999, 65–72
https://doi.org/10.1145/311535.311542
29 Kielhorn L. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Dissertation for the Doctoral Degree. Graz: Graz University of Technology, 2009
30 Zhu Y, Bridson R, Greif C. Simulating rigid body fracture with surface meshes. ACM Transactions on Graphics, 2015, 34(4): 150
https://doi.org/10.1145/2766942
31 Hahn D, Wojtan C. High-resolution brittle fracture simulation with boundary elements. ACM Transactions on Graphics, 2015, 34(4): 151
https://doi.org/10.1145/2766896
32 Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based animation of elastic, plastic and melting objects. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2004, 141–151
33 Pauly M, Keiser R, Adams B, Dutré P, Gross M, Guibas L J. Meshless animation of fracturing solids. ACM Transactions on Graphics, 2005, 24(3): 957–964
https://doi.org/10.1145/1073204.1073296
34 Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluidsolid interactions. Computer Animation and Virtual Worlds, 2007, 18(1): 69–82
https://doi.org/10.1002/cav.162
35 Li C, Wang C B, Qin H. Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials. The Visual Computer, 2015, 31(6): 937–946
https://doi.org/10.1007/s00371-015-1117-8
36 Liu N, He X W, Li S, Wang G P. Meshless simulation of brittle fracture. Computer Animation and Virtual Worlds, 2011, 22(2-3): 115–124
https://doi.org/10.1002/cav.412
37 Hesham O. Fast meshless simulation of anisotropic tearing in elastic solids. Dissertation for the Doctoral Degree. Ottawa: Carleton University, 2011
38 Sifakis E, Der K G, Fedkiw R. Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2007, 73–80
39 Wang Y T, Jiang C, Schroeder C, Teran J. An adaptive virtual node algorithm with robust mesh cutting. In: Proceedings of ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2014, 77–85
40 Glondu L, Marchal M, Dumont G. Real-time simulation of brittle fracture using modal analysis. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(2): 201–209
https://doi.org/10.1109/TVCG.2012.121
41 Hirota K, Tanoue Y, Kaneko T. Generation of crack patterns with a physical model. The Visual Computer, 1998, 14(3): 126–137
https://doi.org/10.1007/s003710050128
42 Hirota K, Tanoue Y, Kaneko T. Simulation of three-dimensional cracks. The Visual Computer, 2000, 16(7): 371–378
https://doi.org/10.1007/s003710000069
43 Gobron S, Chiba N. Crack pattern simulation based on 3D surface cellular automata. The Visual Computer, 2001, 17(5): 287–309
https://doi.org/10.1007/s003710100099
44 Gobron S, Norishige C. Simulation of peeling using 3D-surface cellular automata. In: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications. 2001, 338–347
https://doi.org/10.1109/PCCGA.2001.962890
45 Federl P. Modeling fracture formation on growing surfaces. Dissertation for the Doctoral Degree. Calgary: University of Calgary, 2003
46 Paquette E, Poulin P, Drettakis G. The simulation of paint cracking and peeling. In: Proceedings of the Graphics Interface. 2002, 59–68
47 Valette G, Prévost S, Lucas L, Léonard J. A dynamic model of cracks development based on a 3D discrete shrinkage volume propagation. Computer Graphics Forum, 2008, 27(1): 47–62
https://doi.org/10.1111/j.1467-8659.2007.01042.x
48 Müller M, Chentanez N, Kim T Y. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Transactions on Graphics, 2013, 32(4): 115
https://doi.org/10.1145/2461912.2461934
49 Raghavachary S. Fracture generation on polygonal meshes using voronoi polygons. In: Proceedings of ACM SIGGRAPH Conference on Abstracts and Applications. 2002, 187–187
https://doi.org/10.1145/1242073.1242200
50 Tang Y, Fang K J, Fu S H, Zhang L B. An improved algorithm for simulating wax-printing patterns. Textile Research Journal, 2011, 81(14): 1510–1520
https://doi.org/10.1177/0040517511404596
51 Schvartzman S C, Otaduy M A. Fracture animation based on highdimensional voronoi diagrams. In: Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 2014, 15–22
52 Martinet A, Galin E, Desbenoit B, Akkouche S. Procedural modeling of cracks and fractures. In: Proceedings of Shape Modelling Applications. 2004, 346–349
https://doi.org/10.1109/SMI.2004.1314524
53 Wyvill B, van Overveld K, Carpendale S. Rendering cracks in batik. In: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering. 2004, 61–149
https://doi.org/10.1145/987657.987667
54 Hsieh H H, Tai W K. A straightforward and intuitive approach on generation and display of crack-like patterns on 3D objects. In: Nishita T, Peng Q S, Seidel H P, eds. Advances in Computer Graphics, Vol 4035. Berlin: Springer Heidelberg, 2006, 554–561
https://doi.org/10.1007/11784203_51
55 Lu J Y, Georghiades A S, Glaser A, Wu H Z, Wei L Y, Guo B N, Dorsey J, Rushmeier H. Context-aware textures. ACM Transaction on Graphics, 2007, 26(1): 3
https://doi.org/10.1145/1189762.1189765
56 Wei L Y, Lefebvre S, Kwatra V, Turk G. State of the art in examplebased texture synthesis. In: Proceedings of Eurographicsthe ACM SIGGRAPH/ Eurographics. 2009, 93–117
57 Glondu L. Physically-based and real-time simulation of brittle fracture for interactive applications. Dissertation for the Doctoral Degree. Cachan: École normale supérieure de Cachan-ENS Cachan, 2012
58 Liu S G, Chen D. Computer simulation of batik printing patterns with cracks. Textile Research Journal, 2015, 85(18): 1972–1984
https://doi.org/10.1177/0040517514561919
59 Gross D, Seelig T. Fracture Mechanics: With an Introduction to Micromechanics. Springer Science & Business Media, 2011
https://doi.org/10.1007/978-3-642-19240-1
60 Wicke M, Ritchie D, Klingner B M, Burke S, Shewchuk J R, O’Brien J F. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics, 2010, 29(4): 49
https://doi.org/10.1145/1778765.1778786
61 Koschier D, Lipponer S, Bender J. Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2014, 58–66
62 Freund L B. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1990
https://doi.org/10.1017/CBO9780511546761
63 Ventura G. On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. International Journal for Numerical Methods in Engineering, 2006, 66(5): 761–795
https://doi.org/10.1002/nme.1570
64 Fung Y C. A First Course in Continuum Mechanics. Englewood Cliffs, NJ: Prentice-Hall, 1994
65 Rusinkiewicz S. Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission. 2004, 486–493
https://doi.org/10.1109/TDPVT.2004.1335277
66 Iben H N. Generating Surface Crack Patterns. Dissertation for the Doctoral Degree. Berkeley: University of California, Berkeley, 2007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed