|
|
Local structured representation for generic object detection |
Junge ZHANG1,3( ), Kaiqi HUANG1,2,3( ), Tieniu TAN1,2,3( ), Zhaoxiang ZHANG2,3( ) |
1. Center for Research on Intelligent Perception and Computing, Chinese Academy of Sciences, Beijing 100190, China 2. Research Center for Brain-inspired Intelligence, Chinese Academy of Sciences, Beijing 100190, China 3. National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object’s local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
|
Keywords
Local Structured Descriptor
Local Structured Model
Object Representation
Object Structure
Object Detection
PASCAL VOC
|
Corresponding Author(s):
Junge ZHANG,Kaiqi HUANG,Tieniu TAN,Zhaoxiang ZHANG
|
Just Accepted Date: 12 April 2016
Online First Date: 17 March 2017
Issue Date: 26 July 2017
|
|
1 |
AlexeB, Deselaers T, FerrariV . Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2189–2202
https://doi.org/10.1109/TPAMI.2012.28
|
2 |
ChengM M, ZhangZ, LinW Y, Torr P. Bing: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2014, 3286–3293
https://doi.org/10.1109/cvpr.2014.414
|
3 |
ZitnickC, Dollár P. Edge boxes: locating object proposals from edges. In: Proceedings of European Conference on Computer Vision. 2014, 391–405
https://doi.org/10.1007/978-3-319-10602-1_26
|
4 |
YaoC, BaiX, LiuW. A unified framework for multioriented text detection and recognition. IEEE Transactions on Image Processing, 2014, 23(11): 4737–4749
https://doi.org/10.1109/TIP.2014.2353813
|
5 |
ZhuY, YaoC, BaiX. Scene text detection and recognition: recent advances and future trends. Frontiers of Computer Science, 2016, 10(1): 19–36
https://doi.org/10.1007/s11704-015-4488-0
|
6 |
DalalN, TriggsB. Histograms of oriented gradients for human detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2005, 886–893
https://doi.org/10.1109/cvpr.2005.177
|
7 |
VedaldiA, Gulshan V, VarmaM , ZissermanA. Multiple kernels for object detection. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 606–613
https://doi.org/10.1109/iccv.2009.5459183
|
8 |
WangX, HanT X, YanS. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 32–39
https://doi.org/10.1109/iccv.2009.5459207
|
9 |
FelzenszwalbP, Girshick R, McAllesterD , RamananD. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645
https://doi.org/10.1109/TPAMI.2009.167
|
10 |
FergusR, PeronaP, ZissermanA. Object class recognition by unsupervised scale-invariant learning. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2003, 264–271
https://doi.org/10.1109/cvpr.2003.1211479
|
11 |
SchnitzspanP, RothS, SchieleB. Automatic discovery of meaningful object parts with latent CRFs. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2010, 121–128
https://doi.org/10.1109/cvpr.2010.5540220
|
12 |
YangY, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1385–1392
https://doi.org/10.1109/cvpr.2011.5995741
|
13 |
ZhuL, ChenY, YuilleA L, Freeman W T. Latent hierarchical structural learning for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2010, 1062–1069
|
14 |
FischlerM, Elschlager R. The representation and matching of pictorial structures. IEEE Transactions on Computers, 1973, 22(1): 67–92
https://doi.org/10.1109/T-C.1973.223602
|
15 |
OjalaT, Pietikäinen M, HarwoodD . A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51–59
https://doi.org/10.1016/0031-3203(95)00067-4
|
16 |
LoweD G.Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
|
17 |
MarkE, GoolL, WilliamsC K , WinnJ, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303–338
https://doi.org/10.1007/s11263-009-0275-4
|
18 |
ZhangJ, HuangK, YuY, TanT. Boosted local structured HOG-LBP for object localization. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1393–1400
https://doi.org/10.1109/cvpr.2011.5995678
|
19 |
Papageorgiou, C, Poggio T. A trainable system for object detection.International Journal of Computer Vision, 2000, 38(1): 15–33
https://doi.org/10.1023/A:1008162616689
|
20 |
ViolaP, JonesM J. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137–154
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
|
21 |
LeeT S. Image representation using 2D gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959–971
https://doi.org/10.1109/34.541406
|
22 |
ShechtmanE, IraniM. Matching local self-similarities across images and videos. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2007, 1–8
https://doi.org/10.1109/cvpr.2007.383198
|
23 |
FerrariV, Fevrier L, JurieF , SchmidC. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36–51
https://doi.org/10.1109/TPAMI.2007.1144
|
24 |
BaiX, BaiS, ZhuZ, Latecki L J. 3D shape matching via two layer coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12): 2361–2373
https://doi.org/10.1109/TPAMI.2015.2424863
|
25 |
LazebnikS, SchmidC, PonceJ. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2006, 2169–2178
https://doi.org/10.1109/cvpr.2006.68
|
26 |
SivicJ, Russell B, EfrosA , ZissermanA, Freeman W. Discovering objects and their location in images. In: Proceedings of IEEE International Conference on Computer Vision. 2005, 370–377
https://doi.org/10.1109/iccv.2005.77
|
27 |
FelzenszwalbP F, Huttenlocher D P. Distance transforms of sampled functions. Theory of Computing, 2012, 8(1): 415–428
https://doi.org/10.4086/toc.2012.v008a019
|
28 |
EsteparR S J. Local Structure tensor for multidimensional signal processing: applications to medical image analysis. Dissertation for the Doctoral Degree. Valladolid:University of Valladolid, 2005
|
29 |
MorroneC, BurrD. Feature detection in human vision: a phasedependent energy model. In: Proceedings of the Royal Society of London B: Biological Sciences. 1988, 221–245
|
30 |
VenkateshS, OwensR. On the classification of image features. Pattern Recognition Letters, 1990, 11(5): 339–349
https://doi.org/10.1016/0167-8655(90)90043-2
|
31 |
GranlundG H, Knutsson H. Signal Processing for Computer Vision. Dordrecht: Kluwer Academic Publishers, 1995
https://doi.org/10.1007/978-1-4757-2377-9
|
32 |
OlivaA, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145–175
https://doi.org/10.1023/A:1011139631724
|
33 |
OjalaT, Pietikainen M, MaenpaaT . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987
https://doi.org/10.1109/TPAMI.2002.1017623
|
34 |
VarmaM, BabuB R. More generality in efficient multiple kernel learning. In: Proceedings of International Conference onMachine Learning. 2009, 1065–1072
https://doi.org/10.1145/1553374.1553510
|
35 |
FriedmanJ, HastieT, TibshiraniR . Additive logistic regression: a statistical view of boosting. Annuals of Statistics, 2000, 28(2): 374–376
https://doi.org/10.1214/aos/1016218223
|
36 |
HussainS, TriggsB. Feature sets and dimensionality reduction for visual object detection. In: Proceedings of British Machine Vision Conference. 2010
https://doi.org/10.5244/c.24.112
|
37 |
FelzenszwalbP F, Girshick R B, McAllesterD . Discriminatively Trained Deformable Part Models, Release 3
|
38 |
Felzenszwalb, P F, Girshick R B, McAllesterD . Discriminatively Trained Deformable Part Models, Release 4, 2010
|
39 |
GehlerP, Nowozin S. On feature combination for multiclass object classification. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 221–228
https://doi.org/10.1109/iccv.2009.5459169
|
40 |
TorralbaA, MurphyK, FreemanW. Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2004, 762–769
https://doi.org/10.1109/cvpr.2004.1315241
|
41 |
EveringhamM, GoolV L, WilliamsC K I , WinnJ, Zisserman A. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. Lecture Notes in Computer Science, 2003, 2781: 297–304
https://doi.org/10.1007/978-3-540-45243-0_39
|
42 |
EveringhamM, GoolV L, WilliamsC K I , WinnJ, Zisserman A. The PASCAL visual object classes challenge 2007 (VOC2007) results. International Journal of Computer Vision, 2010, 88(2): 303–338
https://doi.org/10.1007/s11263-009-0275-4
|
43 |
DesaiC, Ramanan D, FowlkesC . Discriminative models for multiclass object layout. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 229–236
|
44 |
PedersoliM, Vedaldi A, GonzalezJ . A coarse-to-fine approach for fast deformable object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1353–1360
https://doi.org/10.1109/cvpr.2011.5995668
|
45 |
RazaviN, GallJ, GoolV L. Scalable multi-class object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1505–1512
https://doi.org/10.1109/cvpr.2011.5995441
|
46 |
DivvalaS K, Zitnick C, KapoorA , BakerS. Detecting objects using unsupervised parts-based attributes. Technical Report CMU-RI-TR-11- 10, Robotics Institute. 2010
|
47 |
SchnitzspanP, FritzM, RothS, Schiele B. Discriminative structure learning of hierarchical representations for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2009, 2238–2245
https://doi.org/10.1109/cvpr.2009.5206544
|
48 |
MalisiewiczT, GuptaA, EfrosA A. Ensemble of exemplar-svms for object detection and beyond. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 89–96
https://doi.org/10.1109/iccv.2011.6126229
|
49 |
DuboutC, Fleuret F. Deformable part models with individual part scaling. In: Proceedings of the British Machine Vision Conference. 2013
https://doi.org/10.5244/c.27.28
|
50 |
GidarisS, Komodakis N. Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 1134–1142
https://doi.org/10.1109/iccv.2015.135
|
51 |
GirshickR. Fast r-cnn. 2015, arXiv:1504.08083
|
52 |
GirshickR, Donahue J, DarrellT , MalikJ. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, 580–587
https://doi.org/10.1109/cvpr.2014.81
|
53 |
HeK, ZhangX, RenS, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361
https://doi.org/10.1007/978-3-319-10578-9_23
|
54 |
LiangX, LiuS, WeiY, Liu L, LinL , YanS. Computational baby learning. 2014, arXiv:1411.2861
|
55 |
RenS, HeK, GirshickR, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. 2015, arXiv:1506.01497
|
56 |
RenS, HeK, GirshickR, Zhang X, SunJ . Object detection networks on convolutional feature maps. 2015, arXiv:1504.06066
|
57 |
RenW, HuangK, Tao D, Tan T. Weakly supervised large scale object localization with multiple instance learning and bag splitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 32(2): 405–416
https://doi.org/10.1109/TPAMI.2015.2456908
|
58 |
WanL, EigenD, FergusR. End-to-end integration of a convolutional network, deformable parts model and non-maximum suppression. 2014, arXiv:1411.5309
|
59 |
WangC, HuangK, RenW, Zhang J, MaybankS . Large-scale weakly supervised object localization via latent category learning. IEEE Transactions on Image Processing, 2015, 24(4): 1371–1385
https://doi.org/10.1109/TIP.2015.2396361
|
60 |
ZhangY, SohnK, VillegasR, Pan G, LeeH . Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. 2015, arXiv:1504.03293
|
61 |
ZhuY, Urtasun R, SalakhutdinovR , FidlerS. segDeepM: exploiting segmentation and context in deep neural networks for object detection. 2015, arXiv:1502.04275
|
62 |
SongX, WuT, JiaY, Zhu S C. Discriminatively trained and-or tree models for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2013, 23–28
https://doi.org/10.1109/cvpr.2013.421
|
63 |
WangX, LinL, HuangL, Yan S. Incorporating structural alternatives and sharing into hierarchy for multiclass object recognition and detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2013, 3334–3341
https://doi.org/10.1109/cvpr.2013.428
|
64 |
MarkE, GoolV L, WilliamsC K I , WinnJ, Zisserman A. The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results. Technical Report. 2008
|
65 |
ChenY, ZhuL, YuilleA. Active mask hierarchies for object detection. In: Proceedings of European Conference on Computer Vision. 2010, 43–56
https://doi.org/10.1007/978-3-642-15555-0_4
|
66 |
OttP, Everingham M. Shared parts for deformable part-based models. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1513–1520
https://doi.org/10.1109/cvpr.2011.5995357
|
67 |
ZhangJ, HuangY, HuangK, Wu Z, TanT . Data decomposition and spatial mixture modeling for part based model. In: Proceedings of Asian Conference on Computer Vision. 2012, 123–137
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|