Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (4) : 632-648    https://doi.org/10.1007/s11704-016-5530-6
RESEARCH ARTICLE
Local structured representation for generic object detection
Junge ZHANG1,3(), Kaiqi HUANG1,2,3(), Tieniu TAN1,2,3(), Zhaoxiang ZHANG2,3()
1. Center for Research on Intelligent Perception and Computing, Chinese Academy of Sciences, Beijing 100190, China
2. Research Center for Brain-inspired Intelligence, Chinese Academy of Sciences, Beijing 100190, China
3. National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(659 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object’s local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.

Keywords Local Structured Descriptor      Local Structured Model      Object Representation      Object Structure      Object Detection      PASCAL VOC     
Corresponding Author(s): Junge ZHANG,Kaiqi HUANG,Tieniu TAN,Zhaoxiang ZHANG   
Just Accepted Date: 12 April 2016   Online First Date: 17 March 2017    Issue Date: 26 July 2017
 Cite this article:   
Junge ZHANG,Kaiqi HUANG,Tieniu TAN, et al. Local structured representation for generic object detection[J]. Front. Comput. Sci., 2017, 11(4): 632-648.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5530-6
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I4/632
1 AlexeB, Deselaers T, FerrariV . Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2189–2202
https://doi.org/10.1109/TPAMI.2012.28
2 ChengM M, ZhangZ, LinW Y, Torr P. Bing: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2014, 3286–3293
https://doi.org/10.1109/cvpr.2014.414
3 ZitnickC, Dollár P. Edge boxes: locating object proposals from edges. In: Proceedings of European Conference on Computer Vision. 2014, 391–405
https://doi.org/10.1007/978-3-319-10602-1_26
4 YaoC, BaiX, LiuW. A unified framework for multioriented text detection and recognition. IEEE Transactions on Image Processing, 2014, 23(11): 4737–4749
https://doi.org/10.1109/TIP.2014.2353813
5 ZhuY, YaoC, BaiX. Scene text detection and recognition: recent advances and future trends. Frontiers of Computer Science, 2016, 10(1): 19–36
https://doi.org/10.1007/s11704-015-4488-0
6 DalalN, TriggsB. Histograms of oriented gradients for human detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2005, 886–893
https://doi.org/10.1109/cvpr.2005.177
7 VedaldiA, Gulshan V, VarmaM , ZissermanA. Multiple kernels for object detection. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 606–613
https://doi.org/10.1109/iccv.2009.5459183
8 WangX, HanT X, YanS. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 32–39
https://doi.org/10.1109/iccv.2009.5459207
9 FelzenszwalbP, Girshick R, McAllesterD , RamananD. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645
https://doi.org/10.1109/TPAMI.2009.167
10 FergusR, PeronaP, ZissermanA. Object class recognition by unsupervised scale-invariant learning. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2003, 264–271
https://doi.org/10.1109/cvpr.2003.1211479
11 SchnitzspanP, RothS, SchieleB. Automatic discovery of meaningful object parts with latent CRFs. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2010, 121–128
https://doi.org/10.1109/cvpr.2010.5540220
12 YangY, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1385–1392
https://doi.org/10.1109/cvpr.2011.5995741
13 ZhuL, ChenY, YuilleA L, Freeman W T. Latent hierarchical structural learning for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2010, 1062–1069
14 FischlerM, Elschlager R. The representation and matching of pictorial structures. IEEE Transactions on Computers, 1973, 22(1): 67–92
https://doi.org/10.1109/T-C.1973.223602
15 OjalaT, Pietikäinen M, HarwoodD . A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51–59
https://doi.org/10.1016/0031-3203(95)00067-4
16 LoweD G.Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
17 MarkE, GoolL, WilliamsC K , WinnJ, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303–338
https://doi.org/10.1007/s11263-009-0275-4
18 ZhangJ, HuangK, YuY, TanT. Boosted local structured HOG-LBP for object localization. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1393–1400
https://doi.org/10.1109/cvpr.2011.5995678
19 Papageorgiou, C, Poggio T. A trainable system for object detection.International Journal of Computer Vision, 2000, 38(1): 15–33
https://doi.org/10.1023/A:1008162616689
20 ViolaP, JonesM J. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137–154
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
21 LeeT S. Image representation using 2D gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959–971
https://doi.org/10.1109/34.541406
22 ShechtmanE, IraniM. Matching local self-similarities across images and videos. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2007, 1–8
https://doi.org/10.1109/cvpr.2007.383198
23 FerrariV, Fevrier L, JurieF , SchmidC. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36–51
https://doi.org/10.1109/TPAMI.2007.1144
24 BaiX, BaiS, ZhuZ, Latecki L J. 3D shape matching via two layer coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12): 2361–2373
https://doi.org/10.1109/TPAMI.2015.2424863
25 LazebnikS, SchmidC, PonceJ. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2006, 2169–2178
https://doi.org/10.1109/cvpr.2006.68
26 SivicJ, Russell B, EfrosA , ZissermanA, Freeman W. Discovering objects and their location in images. In: Proceedings of IEEE International Conference on Computer Vision. 2005, 370–377
https://doi.org/10.1109/iccv.2005.77
27 FelzenszwalbP F, Huttenlocher D P. Distance transforms of sampled functions. Theory of Computing, 2012, 8(1): 415–428
https://doi.org/10.4086/toc.2012.v008a019
28 EsteparR S J. Local Structure tensor for multidimensional signal processing: applications to medical image analysis. Dissertation for the Doctoral Degree. Valladolid:University of Valladolid, 2005
29 MorroneC, BurrD. Feature detection in human vision: a phasedependent energy model. In: Proceedings of the Royal Society of London B: Biological Sciences. 1988, 221–245
30 VenkateshS, OwensR. On the classification of image features. Pattern Recognition Letters, 1990, 11(5): 339–349
https://doi.org/10.1016/0167-8655(90)90043-2
31 GranlundG H, Knutsson H. Signal Processing for Computer Vision. Dordrecht: Kluwer Academic Publishers, 1995
https://doi.org/10.1007/978-1-4757-2377-9
32 OlivaA, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145–175
https://doi.org/10.1023/A:1011139631724
33 OjalaT, Pietikainen M, MaenpaaT . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987
https://doi.org/10.1109/TPAMI.2002.1017623
34 VarmaM, BabuB R. More generality in efficient multiple kernel learning. In: Proceedings of International Conference onMachine Learning. 2009, 1065–1072
https://doi.org/10.1145/1553374.1553510
35 FriedmanJ, HastieT, TibshiraniR . Additive logistic regression: a statistical view of boosting. Annuals of Statistics, 2000, 28(2): 374–376
https://doi.org/10.1214/aos/1016218223
36 HussainS, TriggsB. Feature sets and dimensionality reduction for visual object detection. In: Proceedings of British Machine Vision Conference. 2010
https://doi.org/10.5244/c.24.112
37 FelzenszwalbP F, Girshick R B, McAllesterD . Discriminatively Trained Deformable Part Models, Release 3
38 Felzenszwalb, P F, Girshick R B, McAllesterD . Discriminatively Trained Deformable Part Models, Release 4, 2010
39 GehlerP, Nowozin S. On feature combination for multiclass object classification. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 221–228
https://doi.org/10.1109/iccv.2009.5459169
40 TorralbaA, MurphyK, FreemanW. Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2004, 762–769
https://doi.org/10.1109/cvpr.2004.1315241
41 EveringhamM, GoolV L, WilliamsC K I , WinnJ, Zisserman A. Empirical analysis of detection cascades of boosted classifiers for rapid object detection. Lecture Notes in Computer Science, 2003, 2781: 297–304
https://doi.org/10.1007/978-3-540-45243-0_39
42 EveringhamM, GoolV L, WilliamsC K I , WinnJ, Zisserman A. The PASCAL visual object classes challenge 2007 (VOC2007) results. International Journal of Computer Vision, 2010, 88(2): 303–338
https://doi.org/10.1007/s11263-009-0275-4
43 DesaiC, Ramanan D, FowlkesC . Discriminative models for multiclass object layout. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 229–236
44 PedersoliM, Vedaldi A, GonzalezJ . A coarse-to-fine approach for fast deformable object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1353–1360
https://doi.org/10.1109/cvpr.2011.5995668
45 RazaviN, GallJ, GoolV L. Scalable multi-class object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1505–1512
https://doi.org/10.1109/cvpr.2011.5995441
46 DivvalaS K, Zitnick C, KapoorA , BakerS. Detecting objects using unsupervised parts-based attributes. Technical Report CMU-RI-TR-11- 10, Robotics Institute. 2010
47 SchnitzspanP, FritzM, RothS, Schiele B. Discriminative structure learning of hierarchical representations for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2009, 2238–2245
https://doi.org/10.1109/cvpr.2009.5206544
48 MalisiewiczT, GuptaA, EfrosA A. Ensemble of exemplar-svms for object detection and beyond. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 89–96
https://doi.org/10.1109/iccv.2011.6126229
49 DuboutC, Fleuret F. Deformable part models with individual part scaling. In: Proceedings of the British Machine Vision Conference. 2013
https://doi.org/10.5244/c.27.28
50 GidarisS, Komodakis N. Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 1134–1142
https://doi.org/10.1109/iccv.2015.135
51 GirshickR. Fast r-cnn. 2015, arXiv:1504.08083
52 GirshickR, Donahue J, DarrellT , MalikJ. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2014, 580–587
https://doi.org/10.1109/cvpr.2014.81
53 HeK, ZhangX, RenS, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361
https://doi.org/10.1007/978-3-319-10578-9_23
54 LiangX, LiuS, WeiY, Liu L, LinL , YanS. Computational baby learning. 2014, arXiv:1411.2861
55 RenS, HeK, GirshickR, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. 2015, arXiv:1506.01497
56 RenS, HeK, GirshickR, Zhang X, SunJ . Object detection networks on convolutional feature maps. 2015, arXiv:1504.06066
57 RenW, HuangK, Tao D, Tan T. Weakly supervised large scale object localization with multiple instance learning and bag splitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 32(2): 405–416
https://doi.org/10.1109/TPAMI.2015.2456908
58 WanL, EigenD, FergusR. End-to-end integration of a convolutional network, deformable parts model and non-maximum suppression. 2014, arXiv:1411.5309
59 WangC, HuangK, RenW, Zhang J, MaybankS . Large-scale weakly supervised object localization via latent category learning. IEEE Transactions on Image Processing, 2015, 24(4): 1371–1385
https://doi.org/10.1109/TIP.2015.2396361
60 ZhangY, SohnK, VillegasR, Pan G, LeeH . Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. 2015, arXiv:1504.03293
61 ZhuY, Urtasun R, SalakhutdinovR , FidlerS. segDeepM: exploiting segmentation and context in deep neural networks for object detection. 2015, arXiv:1502.04275
62 SongX, WuT, JiaY, Zhu S C. Discriminatively trained and-or tree models for object detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2013, 23–28
https://doi.org/10.1109/cvpr.2013.421
63 WangX, LinL, HuangL, Yan S. Incorporating structural alternatives and sharing into hierarchy for multiclass object recognition and detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2013, 3334–3341
https://doi.org/10.1109/cvpr.2013.428
64 MarkE, GoolV L, WilliamsC K I , WinnJ, Zisserman A. The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results. Technical Report. 2008
65 ChenY, ZhuL, YuilleA. Active mask hierarchies for object detection. In: Proceedings of European Conference on Computer Vision. 2010, 43–56
https://doi.org/10.1007/978-3-642-15555-0_4
66 OttP, Everingham M. Shared parts for deformable part-based models. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2011, 1513–1520
https://doi.org/10.1109/cvpr.2011.5995357
67 ZhangJ, HuangY, HuangK, Wu Z, TanT . Data decomposition and spatial mixture modeling for part based model. In: Proceedings of Asian Conference on Computer Vision. 2012, 123–137
[1] FCS-0632-15530-JGZ_suppl_1 Download
[1] Huaizu JIANG, Ming-Ming CHENG, Shi-Jie LI, Ali BORJI, Jingdong WANG. Joint salient object detection and existence prediction[J]. Front. Comput. Sci., 2019, 13(4): 778-788.
[2] Jiuyue HAO, Chao LI, Zhang XIONG, Ejaz HUSSAIN. A temporal-spatial background modeling of dynamic scenes[J]. Front Comput Sci Chin, 2011, 5(3): 290-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed