Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (6) : 937-947    https://doi.org/10.1007/s11704-016-6138-6
RESEARCH ARTICLE
Non-fragile control of fuzzy affine dynamic systems via piecewise Lyapunov functions
Shasha FU, Jianbin QIU(), Wenqiang JI
Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(401 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper addresses the robust static output feedback (SOF) controller design problem for a class of uncertain fuzzy affine systems that are robust against both the plant parameter perturbations and controller gain variations. More specifically, the purpose is to synthesize a non-fragile piecewise affine SOF controller guaranteeing the stability of the resulting closed-loop fuzzy affine dynamic system with certain performance index. Based on piecewise quadratic Lyapunov functions and applying some convexification procedures, two different approaches are proposed to solve the robust and non-fragile piecewise affine SOF controller synthesis problem. It is shown that the piecewise affine controller gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, simulation examples are given to illustrate the effectiveness of the proposed methods.

Keywords fuzzy affine systems      non-fragile      robust output feedback control     
Corresponding Author(s): Jianbin QIU   
Just Accepted Date: 21 July 2016   Online First Date: 31 October 2016    Issue Date: 07 December 2017
 Cite this article:   
Shasha FU,Jianbin QIU,Wenqiang JI. Non-fragile control of fuzzy affine dynamic systems via piecewise Lyapunov functions[J]. Front. Comput. Sci., 2017, 11(6): 937-947.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6138-6
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I6/937
1 SalaA, GuerraT M, BabŭskaR . Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 2005, 156(3): 432–444
https://doi.org/10.1016/j.fss.2005.05.041
2 FengG. A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2006, 14(5): 676–697
https://doi.org/10.1109/TFUZZ.2006.883415
3 TakagiT, SugenoM. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15(1): 116–132
https://doi.org/10.1109/TSMC.1985.6313399
4 TanakaK, WangH O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley, 2001
https://doi.org/10.1002/0471224596
5 TeixeiraM C M, Żak S H. Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Transactions on Fuzzy Systems, 1999, 7(2): 133–142
https://doi.org/10.1109/91.755395
6 GaoH, ChenT. Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Transactions on Fuzzy Systems, 2007, 15(5): 972–983
https://doi.org/10.1109/TFUZZ.2006.890660
7 ZhangC, FengG, GaoH, Qiu J. ∞ filtering for nonlinear discretetime systems subject to quantization and packet dropouts. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 353–365
https://doi.org/10.1109/TFUZZ.2010.2098880
8 LiuM, CaoX, ShiP. Fuzzy-model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Transactions on Fuzzy Systems, 2013, 21(5): 789–799
https://doi.org/10.1109/TFUZZ.2012.2224872
9 QiuJ, GaoH, DingS X. Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1207–1217
https://doi.org/10.1109/TIE.2015.2504351
10 LiL, DingS X, QiuJ, Yang Y. Real-time fault detection approach for nonlinear systems and its asynchronous T-S fuzzy observer-based implementation. IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2015.2513438
https://doi.org/10.1109/TCYB.2015.2513438
11 JohanssonM, Rantzer A, ÅrzénK E. Piecewise quadratic stability of fuzzy systems. IEEE Transaction on Fuzzy Systems, 1999, 7(6): 713–722
https://doi.org/10.1109/91.811241
12 FengG, ChenC L, SunD, Zhu Y. ∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 94–103
https://doi.org/10.1109/TFUZZ.2004.839662
13 QiuJ, FengG, GaoH. Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements. IEEE Transactions on Fuzzy Systems, 2012, 20(6): 1046–1062
https://doi.org/10.1109/TFUZZ.2012.2191790
14 FuS, WangM, QiuJ, He Y. T-S fuzzy affine model based nonsynchronized state estimation for nonlinear Itô stochastic systems. Neurocomputing, 2015, 167: 424–433
https://doi.org/10.1016/j.neucom.2015.04.052
15 LiL, DingS X, QiuJ, Yang Y, ZhangY . Weighted fuzzy observerbased fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions. IEEE Transactions on Fuzzy Systems, doi: 10.1109/TFUZZ.2016.2514371
https://doi.org/10.1109/TFUZZ.2016.2514371
16 ZhouK, DoyleJ C, GloverK. Robust Optimal Control, Englewood Cliffs, NJ: Prentice Hall, 2001
17 ZhangC, FengG, QiuJ, Shen Y. Control synthesis for a class of linear network-based systems with communication constraints. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3339–3348
18 WeiY, QiuJ, KarimiH R, Wang M. ∞ model reduction for continuous-time Markovian jump systems with incomplete statistics of mode information. International Journal of Systems Science, 2014, 45(7): 1496–1507
https://doi.org/10.1080/00207721.2013.837545
19 QiuJ, WeiY, KarimiH R. New approach to delay-dependent ∞ control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. Journal of The Franklin Institute, 2015, 352(1): 189–215
https://doi.org/10.1016/j.jfranklin.2014.10.022
20 WangT, GaoH, QiuJ. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Transactions on Neural Networks and Learning Sys tems, 2016, 27(2): 416–425
https://doi.org/10.1109/TNNLS.2015.2411671
21 KeelL H, Bhattacharyya S P. Robust, fragile, or optimal? IEEE Transactions on Automatic Control, 1997, 42(8): 1098–1105
https://doi.org/10.1109/9.618239
22 DuH, LamJ, SzeK Y. Design of non-fragile ∞ controller for active vehicle suspensions. Journal of Vibration and Control, 2005, 11(2): 225–243
https://doi.org/10.1177/1077546305049392
23 ZhangB, ZhouS, LiT. A new approach to robust and non-fragile ∞ control for uncertain fuzzy systems. Information Sciences, 2007, 177(22): 5118–5133
https://doi.org/10.1016/j.ins.2007.05.004
24 ChenJ D, YangC D, LienC H, Horng J H. New delay-dependent nonfragile ∞ observer-based control for continuous time-delay systems. Information Sciences, 2008, 178(24): 4699–4706
https://doi.org/10.1016/j.ins.2008.08.009
25 FanY, LiuL, FengG, Wang Y. Self-triggered consensus for multiagent systems with Zeno-free triggers. IEEE Transactions on Automatic Control, 2015, 60(10): 2779–2784
https://doi.org/10.1109/TAC.2015.2405294
26 MahmoudM S, Almutairi N B. Resilient decentralized stabilization of interconnected time-delay systems with polytopic uncertainties. International Journal of Robust and Nonlinear Control, 2011, 21(4): 355–372
https://doi.org/10.1002/rnc.1594
27 DadkhahN, Rodrigues L. Non-fragile state-feedback control of uncertain piecewise-affine slab systems with input constraints: a convex optimisation approach. IET Control Theory & Application, 2014, 8(8): 626–632
https://doi.org/10.1049/iet-cta.2013.0202
28 El GhaouiL, OustryF, AitRamiM. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 1997, 42(8): 1171–1176
https://doi.org/10.1109/9.618250
29 QiuJ, FengG, GaoH. Static-output-feedback control of continuoustime T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 2013, 21(2): 245–261
https://doi.org/10.1109/TFUZZ.2012.2210555
30 KchaouM, El Hajjaji A, ToumiA . Non-fragile ∞ output feedback control design for continuous-time fuzzy systems. ISA Transactions, 2015, 54: 3–14
https://doi.org/10.1016/j.isatra.2014.05.026
31 SyrmosV L, Abdallah C T, DoratoP , GrigoriadisK. Static output feedback-a survey. Automatica, 1997, 33(2): 125–137
https://doi.org/10.1016/S0005-1098(96)00141-0
32 QiuJ, FengG, GaoH. Asynchronous output feedback control of networked nonlinear systems with multiple packet dropouts: T-S fuzzy affine model based approach. IEEE Transactions on Fuzzy Systems, 2011, 19(6): 1014–1030
https://doi.org/10.1109/TFUZZ.2011.2159011
33 WeiY, QiuJ, KarimiH R, Wang M. New results on ∞ dynamic output feedback control for Markovian jump systems with time-varying delay and deficient mode information. Optimal Control Applications and Methods, 2014, 35(6): 656–675
https://doi.org/10.1002/oca.2093
34 ChenL, HuangX, FuS. Observer-based sensor fault-tolerant control for semi-Markovian jump systems. Nonlinear Analysis: Hybrid Systems, 2016, 22: 161–177
https://doi.org/10.1016/j.nahs.2016.04.003
35 XieL. Output feedback ∞ control of systems with parameter uncertainty. International Journal of Control, 1996, 63(4): 741–750
https://doi.org/10.1080/00207179608921866
36 BoydS, El Ghaoui L, FeronE , BalakrishnanV. Linear Matrix Inequality in Systems and Control Theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994
https://doi.org/10.1137/1.9781611970777
37 QiuJ, DingS X, GaoH, Yin S. Fuzzy-model-based reliable static output feedback ∞ control of nonlinear hyperbolic PDE systems. IEEE Transaction on Fuzzy Systems, 2016, 24(2): 388–400
https://doi.org/10.1109/TFUZZ.2015.2457934
38 WeiY, QiuJ, LamH K, Wu L. Approaches to T-S fuzzy affine model based reliable output feedback control for nonlinear Itô stochastic systems. IEEE Transaction on Fuzzy Systems, doi: 10.1109/TFUZZ.2016.2566810
https://doi.org/10.1109/TFUZZ.2016.2566810
[1] FCS-0937-16138-JBQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed