Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2019, Vol. 13 Issue (5) : 1102-1115    https://doi.org/10.1007/s11704-017-6279-2
RESEARCH ARTICLE
EDOA: an efficient delay optimization approach for mixed-polarity Reed-Muller logic circuits under the unit delay model
Zhenxue HE1,2,3, Limin XIAO2,3(), Fei GU3, Li RUAN2,3, Zhisheng HUO2,3, Mingzhe LI4, Mingfa ZHU2,3, Longbing ZHANG5, Rui LIU6, Xiang WANG4
1. College of Information Science and Technology, Hebei Agricultural University, Baoding 071001, China
2. State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China
3. School of Computer Science and Engineering, Beihang University, Beijing 100083, China
4. School of Electronic and Information Engineering, Beihang University, Beijing 100083, China
5. State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
6. National Engineering Research Center for Science & Technology Resources Sharing Service, Beijing 100083, China
 Download: PDF(542 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Delay optimization has recently attracted significant attention. However, few studies have focused on the delay optimization of mixed-polarity Reed-Muller (MPRM) logic circuits. In this paper, we propose an efficient delay optimization approach (EDOA) for MPRM logic circuits under the unit delay model, which can derive an optimal MPRM logic circuit with minimum delay. First, the simplest MPRM expression with the fewest number of product terms is obtained using a novel Reed-Muller expression simplification approach (RMESA) considering don’t-care terms. Second, a minimum delay decomposition approach based on a Huffman tree construction algorithm is utilized on the simplestMPRM expression. Experimental results on MCNC benchmark circuits demonstrate that compared to the Berkeley SIS 1.2 and ABC, the EDOA can significantly reduce delay for most circuits. Furthermore, for a few circuits, while reducing delay, the EDOA incurs an area penalty.

Keywords delay optimization      mixed-polarity Reed-Muller logic circuits      unit delay model      don’t-care terms      Huffman tree construction algorithm     
Corresponding Author(s): Limin XIAO   
Just Accepted Date: 03 May 2017   Online First Date: 25 May 2018    Issue Date: 25 June 2019
 Cite this article:   
Zhenxue HE,Limin XIAO,Fei GU, et al. EDOA: an efficient delay optimization approach for mixed-polarity Reed-Muller logic circuits under the unit delay model[J]. Front. Comput. Sci., 2019, 13(5): 1102-1115.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-017-6279-2
https://academic.hep.com.cn/fcs/EN/Y2019/V13/I5/1102
1 X Wang, Y Lu, Y Zhang. Power optimization in logic synthesis for mixed polarity Reed-Muller logic circuits. The Computer Journal, 2015, 58(6): 1307–1313
https://doi.org/10.1093/comjnl/bxu072
2 H Liang, Y S Xia, L B Qian, C L Huang. Low power 3-input AND/XOR gate design. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(5): 940–945
3 Z X He, L M Xiao, F Gu, T S Xia, S B Su, Z S Huo, R Zhang, L B Zhang, L Ruan, X Wang. An efficient and fast polarity optimization approach for mixed polarity Reed-Muller logic circuits. Frontiers of Computer Science, 2017, 11(4): 728–742
https://doi.org/10.1007/s11704-016-5259-2
4 P J Wang, Z H Wang, R Xu. Conversion algorithm for MPRM expansion. Journals of Semiconductors, 2014, 35(3): 150–155
https://doi.org/10.1088/1674-4926/35/3/035007
5 D L Bu, J H Jiang. An efficient optimization algorithm for multi-output MPRM circuits with very large number of input variables. In: Proceedings of the 7th IEEE Joint International Conference on Information Technology and Artificial Intelligence. 2014, 228–232
https://doi.org/10.1109/ITAIC.2014.7065040
6 V Geetha, N Devarajan, P N Neelakantan. OR-Bridging fault analysis and diagnosis for exclusive-OR sum of products Reed-Muller canonical circuits. Journal of Computer Science, 2011, 7(5): 744–748
https://doi.org/10.3844/jcssp.2011.744.748
7 M Yang, J R Tong, J M Lai. Optimisation of fixed polarity canonical or-coincidence expansions. Journal of Computers, 2013, 8(10): 2520–2526
https://doi.org/10.4304/jcp.8.10.2520-2526
8 N M Laskar, R Sen, P K Paul, K L Bbishnab. A survey on VLSI floorplanning: its representation and modern approaches of optimization. In: Proceedings of International Conference on Innovations in Information Embedded and Communication Systems. 2015, 1–9
9 A Prakash, R K Lal. PSO: an approach to multiobjective VLSI partitioning. In: Proceedings of International Conference on Innovations in Information, Embedded and Communication System. 2015, 1–7
https://doi.org/10.1109/ICIIECS.2015.7192971
10 I Jang, J Kim, S Y Kim. Accurate delay models of CMOS CML circuits for design optimization. Analog Integrated Circuits and Signal Processing, 2015, 82(1): 297–307
https://doi.org/10.1007/s10470-014-0460-4
11 B Severens, E Vansteenkiste, K Heyse, D Stroobandt. Estimating circuit delays in FPGAs after technology mapping. In: Proceedings of International Conference on Field Programmable Logic and Applications. 2015, 1–4
https://doi.org/10.1109/FPL.2015.7294010
12 Y F Liu, R S Shelar, J Hu. Simultaneous technology mapping and placement for delay minimization. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2011, 30(3): 416–426
https://doi.org/10.1109/TCAD.2010.2089569
13 A E A Almaini. Electronic Logic Systems. New York: Prentice-Hall, 1994
14 M Yang, A E A Almaini, P J Wang. FPGA placement optimization by two-step unified genetic algorithm and simulated annealing algorithm. Journal of Electronics, 2006, 23(4): 632–636
https://doi.org/10.1007/s11767-005-0198-3
15 H Z Yu, Z D Jiang, P J Wang, K P Li. GA-DTPSO algorithm and its application in area optimization of mixed polarity XNOR/OR circuits. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(5): 946–952
16 H Liang, Y S Xia, S H Wang, L B Qian. A novel low power threeinput OR/XNOR gate design. Journal of Low Power Electronics, 2014, 10(3): 342–346
https://doi.org/10.1166/jolpe.2014.1337
17 E C Tan, C Y Chia, K K Wong. Reed-Muller versus traditional Boolean circuit implementation. In: Proceedings of IEEE Region International Conference on Microelectronics and VLSI. 1995, 175–178
https://doi.org/10.1109/TENCON.1995.496366
18 T K Shahana, R K James, K P Jacob, S Sasi. Automated synthesis of delay-reduced Reed-Muller universal logic module. In: Proceedings of NORCHIP Conference. 2005, 90–93
https://doi.org/10.1109/NORCHP.2005.1596996
19 C K Vijayakumari, P Mythili, R K James, S A Kumar. Optimal design of combinational logic circuits using genetic algorithm and Reed- Muller universal logic modules. In: Proceedings of International Conference on Embedded Systems. 2014, 1–6
https://doi.org/10.1109/EmbeddedSys.2014.6953039
20 P J Wang, Z H Wang. Delay and area optimization for FPRM circuits by FDDs. Journal of Xidian University, 2013, 40(1): 135–140
21 Z H Wang, P J Wang, H Z Yu, H H Zhang. Delay and area optimization for FPRM circuits based on PSO algorithm. Journal of Circuits and Systems, 2012, 17(5): 75–80
22 P J Wang, Z H Wang, Y W Chen, H Li. Searching the best polarity for fixed polarity Reed-Muller circuits based on delay model. Journal of Zhejiang University (Engineering Science), 2013, 47(2): 361–367
23 M Sampson, M Kalathas, D Voudouris, G Papakonstantinou. Exact ESOP expansion for incompletely specified functions. Integration, 2012, 45(2): 197–204
https://doi.org/10.1016/j.vlsi.2011.10.001
24 B A Jassani, A E A Almaini, N Urquhart. Minimization of incompletely specified mixed polarity Reed-Muller functions using genetic algorithm. In: Proceedings of International Conference on Signals, Circuits and Systems. 2009, 1–6
https://doi.org/10.1109/ICSCS.2009.5412318
25 D DEBNATH, T SASAO. Exact minimization of FPRMs for incompletely specified functions by using MTBDDs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer, 2005, 88(12): 3332–3341
26 D S Wang, P J Wang, F Sun, H Z Yu. Fixed-polarity conversions for logic functions include don’t care terms. Journal of Circuits and Systems, 2013, 18(1): 117–121
27 D S Wang, P J Wang. Algorithms about minimization of MPRM expansions including don’t care terms. Journal of Zhejiang University (Science Edition), 2014, 41(1): 38–43
28 M Fujita, R Murgai. Delay estimation and optimization of logic circuits: a survey. In: Proceedings of Asia and South Pacific Design Automation Conference. 1997, 25–30
https://doi.org/10.1109/ASPDAC.1997.600053
29 X L Zhang, G C Zuo, J Yang . Solving travelling salesman problem by genetic algorithm with heuristic mutation strategy. Computer Applications and Software, 2010, 27(3): 237–240
30 D Varma, E A Trachtenberg. Computation of Reed-Muller expansions of incompletely specified Boolean functions from reduced representations. IEE Proceedings E (Computer and Digital Techniques), 1991, 138(2): 85–92
https://doi.org/10.1049/ip-e.1991.0011
31 A E A Almaini, L Mckenzie. Tabular techniques for generating kronecker expansions. IEE Proceedings — Computers and Digital Techniques, 1996, 143(4): 205–212
https://doi.org/10.1049/ip-cdt:19960564
32 M Yang, H Y Xu, A E A Almaini. Optimization of mixed polarity Reed- Muller functions using genetic algorithm. In: Proceedings of International Conference on Computer Research and Development. 2011, 293–296
https://doi.org/10.1109/ICCRD.2011.5764198
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed