Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (2) : 245-263    https://doi.org/10.1007/s11704-017-6325-0
RESEARCH ARTICLE
Online clustering of streaming trajectories
Jiali MAO1,2(), Qiuge SONG1, Cheqing JIN1, Zhigang ZHANG1, Aoying ZHOU1
1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
2. School of Computing, China West Normal University, Nanchong 637009, China
 Download: PDF(1560 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the increasing availability of modern mobile devices and location acquisition technologies, massive trajectory data of moving objects are collected continuously in a streaming manner. Clustering streaming trajectories facilitates finding the representative paths or common moving trends shared by different objects in real time. Although data stream clustering has been studied extensively in the past decade, little effort has been devoted to dealing with streaming trajectories. The main challenge lies in the strict space and time complexities of processing the continuously arriving trajectory data, combined with the difficulty of concept drift. To address this issue, we present two novel synopsis structures to extract the clustering characteristics of trajectories, and develop an incremental algorithm for the online clustering of streaming trajectories (called OCluST). It contains a micro-clustering component to cluster and summarize the most recent sets of trajectory line segments at each time instant, and a macro-clustering component to build large macro-clusters based on micro-clusters over a specified time horizon. Finally, we conduct extensive experiments on four real data sets to evaluate the effectiveness and efficiency of OCluST, and compare it with other congeneric algorithms. Experimental results show that OCluST can achieve superior peformance in clustering streaming trajectories.

Keywords streaming trajectory      synopsis data structure      concept drift      sliding window     
Corresponding Author(s): Jiali MAO   
Just Accepted Date: 29 September 2017   Online First Date: 20 December 2017    Issue Date: 23 March 2018
 Cite this article:   
Jiali MAO,Qiuge SONG,Cheqing JIN, et al. Online clustering of streaming trajectories[J]. Front. Comput. Sci., 2018, 12(2): 245-263.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-017-6325-0
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I2/245
1 Pan B, Zheng Y, Wilkie D, Shahabi C. Crowd sensing of traffic anomalies based on human mobility and social media. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2013, 334–343
https://doi.org/10.1145/2525314.2525343
2 Liu H P, Jin C Q, Zhou A Y. Popular route planning with travel cost estimation. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2016, 403–418
https://doi.org/10.1007/978-3-319-32049-6_25
3 Chen C, Chen X, Wang Z, Wang Y S, Zhang D Q. ScenicPlanner: planning scenic travel routes leveraging heterogeneous user-generated digital footprints. Frontiers of Computer Science, 2017, 11(1): 61–74
https://doi.org/10.1007/s11704-016-5550-2
4 Duan X Y, Jin C Q, Wang X L, Zhou A Y, Yue K. Real-time personalized taxi-sharing. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2016, 451–465
https://doi.org/10.1007/978-3-319-32049-6_28
5 Wu H, Tu C C, Sun W W, Zheng B H, Su H, Wang W. GLUE: a parameter-tuning- free map updating system. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015, 683–692
https://doi.org/10.1145/2806416.2806425
6 Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition-andgroup framework. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2007, 593–604
https://doi.org/10.1145/1247480.1247546
7 Ester M, Kriegel H P, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 1996, 226–231
8 Gaffney S, Smyth P. Trajectory clustering with mixtures of regression models. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1999, 63–72
https://doi.org/10.1145/312129.312198
9 Wang W, Yang J, Muntz R R. STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases. 1997, 186–195
10 Jensen C S, Lin D, Ooi B C. Continuous clustering of moving objects. IEEE Transactions on Knowledge & Data Engineering, 2007, 19(9): 1161–1174
https://doi.org/10.1109/TKDE.2007.1054
11 Li Y F, Han J W, Yang J. Clustering moving objects. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2004, 617–622
https://doi.org/10.1145/1014052.1014129
12 Li Z H, Lee J G, Li X L, Han J W. Incremental clustering for trajectories. In: Proceedings of the 15th International Conference on Database Systems for Advanced Applications. 2010, 32–46
https://doi.org/10.1007/978-3-642-12098-5_3
13 Aggarwal C C, Han J W, Wang J Y, Yu P S. A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases. 2003, 81–92
https://doi.org/10.1016/B978-012722442-8/50016-1
14 Hönle N, Großmann M, Reimann S, Mitschang B. Usability analysis of compression algorithms for position data streams. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010, 240–249
https://doi.org/10.1145/1869790.1869825
15 Datar M, Gionis A, Indyk P, Motwani R. Maintaining stream statistics over sliding windows. SIAM Journal on Computing. 2002, 31(6): 635–644
https://doi.org/10.1137/S0097539701398363
16 Chu S, Keogh E J, Hart D M, Pazzani M J. Iterative deepening dynamic time warping for time series. In: Proceedings of the 2nd SIAM International Conference on Data Mining. 2002, 195–212
https://doi.org/10.1137/1.9781611972726.12
17 Vlachos M, Gunopulos D, Kollios G. Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering. 2002, 673–684
https://doi.org/10.1109/ICDE.2002.994784
18 Chen L, Ng R T. On the marriage of Lp-norms and edit distance. In: Proceedings of the 30th International Conference on Very Large Data Bases. 2004, 792–803
https://doi.org/10.1016/B978-012088469-8.50070-X
19 Chen L, Özsu M T, Oria V. Robust and fast similarity search for moving object trajectories. In: Proceedings of ACMSIGMOD International Conference on Management of Data. 2005, 491–502
https://doi.org/10.1145/1066157.1066213
20 Roh G, Hwang S. NNCluster: an efficient clustering algorithm for road network trajectories. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2010, 47–61
https://doi.org/10.1007/978-3-642-12098-5_4
21 Mao J L, Song Q G, Jin C Q, Zhang Z G, Zhou A Y. TSCluWin: trajectory stream clustering over sliding window. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2016, 133–148
https://doi.org/10.1007/978-3-319-32049-6_9
22 Zhang J, Xu J, Liao S S. Aggregating and sampling methods for processing GPS data streams for traffic state estimation. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1629–1641
https://doi.org/10.1109/TITS.2013.2264753
23 Castro P S, Zhang D Q, Li S J. Urban traffic modelling and prediction using large scale taxi GPS traces. In: Proceedings of International Conference on Pervasive Computing. 2012, 57–72
https://doi.org/10.1007/978-3-642-31205-2_4
24 Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129–136
https://doi.org/10.1109/TIT.1982.1056489
25 Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 1996, 103–114
https://doi.org/10.1145/233269.233324
26 Babcock B, Datar M, Motwani R, O’Callaghan L. Maintaining variance and k-medians over data stream windows. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2003, 234–243
https://doi.org/10.1145/773153.773176
27 Aggarwal C C, Yu P S. A framework for clustering uncertain data streams. In: Proceedings of IEEE International Conference on Data Engineering. 2008, 150–159
https://doi.org/10.1109/ICDE.2008.4497423
28 Zhou A Y, Cao F, Qian W N, Jin C Q. Tracking clusters in evolving data streams over sliding windows. Knowledge and Information Systems, 2008, 15(2): 181–214
https://doi.org/10.1007/s10115-007-0070-x
29 Jin C Q, Yu J X, Zhou A Y, Cao F. Efficient clustering of uncertain data streams. Knowledge and Information Systems, 2014, 40(3): 509–539
https://doi.org/10.1007/s10115-013-0657-3
30 Won J I, Kim S W, Baek J H, Lee J. Trajectory clustering in road network environment. In: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining. 2009, 299–305
https://doi.org/10.1109/CIDM.2009.4938663
31 Han B, Liu L, Omiecinski E. Road-network aware trajectory clustering: integrating locality, flow, and density. IEEE Transactions on Mobile Computing, 2015, 14(2): 416–429
https://doi.org/10.1109/TMC.2013.119
32 Lange R, Dürr F, Rothermel K. Efficient real-time trajectory tracking. The VLDB Journal, 2011, 20(5): 671–694
https://doi.org/10.1007/s00778-011-0237-7
33 Nehme R V, Rundensteiner E A. SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Proceedings of the 10th International Conference on Advances in Database Technology. 2006, 1001–1019
https://doi.org/10.1007/11687238_58
34 Sacharidis D, Patroumpas K, Terrovitis M, Kantere V, Potamias M, Mouratidis K, Sellis T. On-line discovery of hot motion paths. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology. 2008, 392–403
https://doi.org/10.1145/1353343.1353392
35 Zheng Y, Yuan N J, Zheng K, Shang S. On discovery of gathering patterns from trajectories. In: Proceedings of IEEE International Conference on Data Engineering. 2013, 242–253
https://doi.org/10.1109/ICDE.2013.6544829
36 Tang L A, Zheng Y, Yuan J, Han J W, Leung A, Hung C C, Peng W C. On discovery of traveling companions from streaming trajectories. In: Proceedings of the 28th IEEE International Conference on Data Engineering. 2012, 186–197
https://doi.org/10.1109/ICDE.2012.33
37 Li X H, Ceikute V, Jensen C S, Tan K L. Effective online group discovery in trajectory databases. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(12): 2752–2766
https://doi.org/10.1109/TKDE.2012.193
38 Deng Z, Hu Y Y, Zhu M, Huang X H, Du B. A scalable and fast OPTICS for clustering trajectory big data. Cluster Computing, 2015, 18(2): 549–562
https://doi.org/10.1007/s10586-014-0413-9
39 Costa G, Manco G, Masciari E. Dealing with trajectory streams by clustering and mathematical transforms. Journal of Intelligent Information Systems, 2014, 42(1): 155–177
https://doi.org/10.1007/s10844-013-0267-2
40 Yu Y W, Wang Q, Wang X D, Wang H, He J. Online clustering for trajectory data stream of moving objects. Computer Science & Information Systems, 2013, 10(3): 1293–1317
https://doi.org/10.2298/CSIS120723049Y
41 Jeung H, Yiu M L, Zhou X F, Jensen C S, Shen H T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 2008, 1(1): 1068–1080
https://doi.org/10.14778/1453856.1453971
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed