Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (6) : 1039-1059    https://doi.org/10.1007/s11704-018-7153-6
REVIEW ARTICLE
Video streaming distribution over mobile Internet: a survey
Mu WANG1(), Changqiao XU1(), Shijie JIA2(), Gabriel-Miro MUNTEAN3
1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Academy of Information Technology, Luoyang Normal University, Luoyang 471934, China
3. Performance Engineering Laboratory, Network Innovations Centre, Rince Institute, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
 Download: PDF(1689 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent times, mobile Internet has witnessed the explosive growth of video applications, embracing user-generated content, Internet Protocol television (IPTV), live streaming, video-on-demand, video conferencing, and FaceTime-like video communications. The exponential rise of video traffic and dynamic user behaviors have proved to be a major challenge to video resource sharing and delivery in the mobile environment. In this article, we present a survey of state-of-the-art video distribution solutions over the Internet. We first discuss the challenges of mobile peer-to-peer (MP2P)-based solutions and categorize them into two groups. We discuss the design idea, characteristics, and drawbacks of solutions in each group.We also give a reviewfor solutions of video transmission in wireless heterogeneous networks. Furthermore, we summarize the information-centric networking (ICN)-based video solutions in terms of in-network caching and name-based routing. Finally, we outline the open issues for mobile video systems that require further studies.

Keywords video streaming      content distribution      resource management      mobile Internet     
Corresponding Author(s): Changqiao XU   
Just Accepted Date: 29 September 2017   Online First Date: 06 March 2018    Issue Date: 04 December 2018
 Cite this article:   
Mu WANG,Changqiao XU,Shijie JIA, et al. Video streaming distribution over mobile Internet: a survey[J]. Front. Comput. Sci., 2018, 12(6): 1039-1059.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-018-7153-6
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I6/1039
1 Bae S H, Kim J, Kim M, Cho S, Choi J S. Assessments of subjective video quality on HEVC-encoded 4K-UHD video for beyond- HDTV broadcasting services. IEEE Transactions on Broadcasting, 2013, 59(2): 209–222
https://doi.org/10.1109/TBC.2013.2247171
2 Roy S D, Lotan G, Zeng W. Social multimedia signals: sense, process, and put them to work. IEEE Multimedia, 2013, 20(1): 7–13
https://doi.org/10.1109/MMUL.2013.9
3 Abeydeera M, Karunaratne M, Karunaratne G, Silva K D, Pasqual A. 4K real-time HEVC decoder on an FPGA. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 236–249
https://doi.org/10.1109/TCSVT.2015.2469113
4 Xiao J, Hannuksela M M, Tillo T, Gabbouj M, Zhu C, Zhao Y. Scalable bit allocation between texture and depth views for 3-D video streaming over heterogeneous networks. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 139–152
https://doi.org/10.1109/TCSVT.2014.2334011
5 Hua K A, Cai Y, Sheu S. Patching: a multicast technique for true video-on-demand services. In: Proceedings of the 6th ACM International Conference on Multimedia. 1998, 191–200
https://doi.org/10.1145/290747.290771
6 Dan A, Sitaram D, Shahabuddin P. Scheduling policies for an ondemand video server with batching. In: Proceedings of the 2nd ACM International Conference on Multimedia. 1994, 15–23
7 Pathan A M K, Buyya R. A taxonomy and survey of content delivery networks. Technical Report. 2007
8 Sahoo J, Salahuddin M, Glitho R, Elbiaze H, Ajib W. A survey on replica server placement algorithms for content delivery networks. IEEE Communications Surveys and Tutorials, 2017, 19(2): 1002–1026
https://doi.org/10.1109/COMST.2016.2626384
9 Wang M, Jayaraman P P, Ranjan R, Zhang M, Li E, Khan S, Pathan M, Georgeakopoulos D. An overview of cloud based content delivery networks: research dimensions and state-of-the-art. Transactions on Large-Scale Dataand Knowledge-Centered Systems, 2015: 131–158
10 Dilley J, Maggs B, Parikh J, Prokop H, Sitaraman R, Weihl B. Globally distributed content delivery. IEEE Internet Computing, 2002, 6(5): 50–58
https://doi.org/10.1109/MIC.2002.1036038
11 Goel U, Wittie M P, Steiner M. FasterWeb through client-assisted CDN server selection. In: Proceedings of the 24th International Conference on Computer Communication and Networks. 2015, 1–10
12 Tran H A, Hoceini S, Mellouk A, Perez J, Zeadally S. QoE-based server selection for content distribution networks. IEEE Transactions on Mobile Computing, 2014, 63(11): 2803–2815
https://doi.org/10.1109/TC.2013.33
13 He J, Song W. Evolving to 5G: a fast and near-optimal request routing protocol for mobile core networks. In: Proceedings of IEEE Global Communications Conference. 2014, 4586–4591
https://doi.org/10.1109/GLOCOM.2014.7037531
14 Taima K. Can we ever charge napster users? IEEE MultiMedia, 2002, 9(4): 76–81
https://doi.org/10.1109/MMUL.2002.1041950
15 Zhang X Y, Liu J C, Li B, Yum Y S P. Coolstreaming/donet: a datadriven overlay network for peer-to-peer live media streaming. In: Proceedings of the 24th IEEE Annual Joint Conference of the IEEE Computer and Communications Societies. 2005, 2102–2111
https://doi.org/10.1109/INFCOM.2005.1498486
16 Silva A P C D, Leonardi E, Mellia M, Meo M. Chunk distribution in mesh-based large-scale P2P streaming systems: a fluid approach. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(3): 451–463
https://doi.org/10.1109/TPDS.2010.63
17 Saxena N, Sahu B J R, Han Y S. Traffic-aware energy optimization in green LTE cellular systems. IEEE Communications Letters, 2014, 18(1): 38–41
https://doi.org/10.1109/LCOMM.2013.111213.131809
18 Duan L, Huang J, Walrand J. Economic analysis of 4G upgrade timing. IEEE Transactions on Mobile Computing, 2015, 14(5): 975–989
https://doi.org/10.1109/TMC.2014.2338299
19 Agyapong P K, Iwamura M, Staehle D, Kiess W, Benjebbour A. Design considerations for a 5G network architecture. IEEE Communications Magazine, 2014, 52(11): 65–75
https://doi.org/10.1109/MCOM.2014.6957145
20 Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey. IEEE Communications Surveys and Tutorials, 2016, 18(3): 1617–1655
https://doi.org/10.1109/COMST.2016.2532458
21 Cisco Inc. Cisco visual networking index: forecast and methodology. White Paper, 2016
22 Wang S L, Liu M, Cheng X Z, Li Z C, Huang J H, Chen B. Opportunistic routing in intermittently connected mobile P2P networks. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 369–378
https://doi.org/10.1109/JSAC.2013.SUP.0513033
23 Chen K, Shen H Y, Zhang H B. Leveraging social networks for P2P content-based file sharing in disconnected manets. IEEE Transactions on Mobile Computing, 2014, 13(2): 235–249
https://doi.org/10.1109/TMC.2012.239
24 Fanelli M, Foschini L, Corradi A, Boukerche A. Self-adaptive context data distribution with quality guarantees in mobile P2P networks. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 115–131
https://doi.org/10.1109/JSAC.2013.SUP.0513011
25 Siekkinen M, Hoque M A, Nurminen J K. Using viewing statistics to control energy and traffic overhead in mobile video streaming. IEEE/ACM Transactions on Networking, 2016, 24(3): 1489–1503
https://doi.org/10.1109/TNET.2015.2415873
26 Chung J M, Go D C. Stochastic vector mobility model for mobile and vehicular ad hoc network simulation. IEEE Transactions on Mobile Computing, 2012, 11(10): 1494–1507
https://doi.org/10.1109/TMC.2011.172
27 Zaidi Z R, Mark B L. Mobility tracking based on autoregressive models. IEEE Transactions on Mobile Computing, 2011, 10(1): 32–43
https://doi.org/10.1109/TMC.2010.130
28 Shen H Y, Li Z, Chen K. Social-P2P: an online social network based P2P file sharing system. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(10): 2874–2889
https://doi.org/10.1109/TPDS.2014.2359020
29 Le-Dang Q, McManis J, Muntean G M. Location-aware chord-based overlay for wireless mesh networks. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1378–1387
https://doi.org/10.1109/TVT.2013.2284793
30 Xu C Q, Zhao F T, Guan J F, Zhang H K, Muntean G M. QoE-driven user-centric VoD services in urban multihomed P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 2013, 62(5): 2273–2289
https://doi.org/10.1109/TVT.2012.2228682
31 Chow C Y, Mokbel M F, Leong H V. On efficient and scalable support of continuous queries in mobile peer-to-peer environments. IEEE Transactions on Mobile Computing, 2011, 10(10): 1473–1487
https://doi.org/10.1109/TMC.2011.104
32 Jia S J, Xu C Q, Vasilakos A V, Guan J F, Zhang H K, Muntean G M. Reliability-oriented ant colony optimization-based mobile peer-to-peer VoD solution in MANETs.Wireless Networks, 2014, 20(5): 32–43
https://doi.org/10.1007/s11276-013-0667-9
33 Kim D, Kim E, Lee C. Efficient peer-to-peer overlay networks for mobile IPTV services. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2303–2309
https://doi.org/10.1109/TCE.2010.5681104
34 Kubo H, Shinkuma R, Takahashi T. Mobile P2P multicast based on social network reducing psychological forwarding cost. In: Proceedings of IEEE Global Telecommunications Conference. 2010, 1–5
35 Xu C Q, Jia S J, Zhong L J, Zhang H K, Muntean G M. Ant-inspired mini-community-based solution for video-on-demand services in wireless mobile networks. IEEE Transactions on Vehicular Broadcasting, 2014, 60(2): 322–335
https://doi.org/10.1109/TBC.2014.2314791
36 Xu C Q, Jia S J, Wang M, Zhong L J, Zhang H K, Muntean G M. Performance-aware mobile community-based VoD streaming over vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 2015, 64(3): 1201–1217
https://doi.org/10.1109/TVT.2014.2329696
37 Xu C Q, Jia S J, Zhong L J, Muntean G M. Socially aware mobile peer-to-peer communications for community multimedia streaming services. IEEE Communications Magazine, 2015, 53(10): 150–156
https://doi.org/10.1109/MCOM.2015.7295477
38 Jia S J, Xu C Q, Guan J F, Zhang H K, Muntean G M. A novel cooperative content fetching-based strategy to increase the quality of video delivery to mobile users in wireless networks. IEEE Transactions on Broadcasting, 2014, 60(2): 370–384
https://doi.org/10.1109/TBC.2014.2322772
39 Xu C Q, Li Z F, Li J L, Zhang H K, Muntean G M. Cross-layer fairnessdriven concurrent multipath video delivery over heterogeneous wireless networks. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(7): 1175–1189
https://doi.org/10.1109/TCSVT.2014.2376138
40 Zhao T S, Liu Q, Chen C W. QoE in video transmission: a user experience-driven strategy. IEEE Communications Surveys and Tutorials, 2017, 19(1): 285–302
https://doi.org/10.1109/COMST.2016.2619982
41 Wallace T D, Shami A. Concurrent multipath transfer using SCTP: modelling and congestion window management. IEEE Transactions on Mobile Computing, 2014, 13(11): 2510–2523
https://doi.org/10.1109/TMC.2014.2307330
42 Huang C M, Lin M S. Multimedia streaming using partially reliable concurrent multipath transfer for multihomed networks. IET Communications, 2011, 5(5): 587–597
https://doi.org/10.1049/iet-com.2010.0401
43 Arianpoo N, Aydin I, Leung V C M. Network coding as a performance booster for concurrent multi-path transfer of data in multi-hop wireless networks. IEEE Transactions on Mobile Computing, 2017, 16(4): 1047–1058
https://doi.org/10.1109/TMC.2016.2585106
44 Wu J Y, Yuen C, Cheng B, Wang M, Chen J L. Energy-minimized multipath video transport to mobile devices in heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1160–1178
https://doi.org/10.1109/JSAC.2016.2551483
45 Bui D H, Lee K, Oh S, Shin I, Shin H, Woo H, Ban D. Greenbag: energy-efficient bandwidth aggregation for real-time streaming in heterogeneous mobile wireless networks. In: Proceedings of the 34th IEEE Real-Time Systems Symposium. 2013, 57–67
https://doi.org/10.1109/RTSS.2013.14
46 Peng Q Y, Chen M H, Walid A, Low S. Energy efficient multipath TCP for mobile devices. In: Proceedings of ACM International Symposium on Mobile Ad Hoc Networking and Computing. 2014, 257–266
https://doi.org/10.1145/2632951.2632971
47 Wu J Y, Cheng B, Yuen C, Shang Y L, Chen J L. Distortion-aware concurrent multipath transfer for mobile video streaming in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 2015, 14(4): 688–701
https://doi.org/10.1109/TMC.2014.2334592
48 Singh V, Ahsan S. MPRTP: multipath considerations for real-time media. In: Proceedings of ACM Multimedia Systems Conference. 2013, 190–201
https://doi.org/10.1145/2483977.2484002
49 Xu C Q, Liu T J, Guan J F, Zhang H K, Muntean G M. CMT-QA: quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 2013, 12(11): 2193–2205
https://doi.org/10.1109/TMC.2012.189
50 Natarajan P, Ekiz N, Amer P D, Stewart R. Concurrent multipath transfer during path failure. Computer Communications, 2009, 32(15): 1577–1587
https://doi.org/10.1016/j.comcom.2009.05.001
51 Xu C Q, Wang P, Xiong C S, Wei X P, Muntean G M. Pipeline network coding-based multipath data transfer in heterogeneous wireless networks. IEEE Transactions on Broadcasting, 2016, 63(2): 376–390
https://doi.org/10.1109/TBC.2016.2590819
52 Xu C Q, Li Z F, Zhong L J, Zhang H K, Muntean G M. CMT-NC: improving the concurrent multipath transfer performance using network coding in wireless networks. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1735–1751
https://doi.org/10.1109/TVT.2015.2409556
53 Amadeo M, Campolo C, Molinaro A. Information-centric networking for connected vehicles: a survey and future perspectives. IEEE Communications Magazine, 2016, 54(2): 98–104
https://doi.org/10.1109/MCOM.2016.7402268
54 Ioannou A, Weber S. A survey of caching policies and forwarding mechanisms in information-centric networking. IEEE Communications Surveys and Tutorials, 2016, 18(4): 2847–2886
https://doi.org/10.1109/COMST.2016.2565541
55 Lederer S, Mueller C, Timmerer C, Hellwagner H. Adaptive multimedia streaming in information-centric networks. IEEE Network, 2014, 28(6): 91–96
https://doi.org/10.1109/MNET.2014.6963810
56 Zhang L X, Afanasyev A, Burke J, Jacobson V, Claffy K, Crowley P, Papadopoulos C, Wang L, Zhang B C. Named data networking. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 66–73
https://doi.org/10.1145/2656877.2656887
57 Grassi G, Pesavento D, Pau G, Vuyyuru R, Wakikawa R, Zhang L X. Vanet via named data networking. In: Proceedings of IEEE Conference on Computer Communications Workshops. 2014, 410–415
https://doi.org/10.1109/INFCOMW.2014.6849267
58 Psaras I, Chai W K, Pavlou G. Probabilistic in-network caching for information-centric networks. In: Proceedings of the 2nd Edition of the ICN Workshop on Information-centric Networking. 2012, 55–60
https://doi.org/10.1145/2342488.2342501
59 Hu X, Gong J. Opportunistic on-path caching for named data networking. IEICE Transactions on Communication, 2014, 97(11): 2360–2367
https://doi.org/10.1587/transcom.E97.B.2360
60 Xu C Q, Quan W, Zhang H K, Grieco L A. GrIMS: green informationcentric multimedia streaming framework in vehicular ad hoc networks. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(2): 483–498
61 Xu C Q, Quan W, Vasilakos A V, Zhang H K, Muntean G M. Information-centric cost-efficient optimization for multimedia content delivery in mobile vehicular networks. Computer Communications, 2017, 99: 93–106
62 Lu Y, Li X, Yu Y T, Gerla M. Information-centric delay-tolerant mobile ad-hoc networks. In: Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2014, 428–433
https://doi.org/10.1109/INFCOMW.2014.6849270
63 Ahmed S H, Bouk S H, Kim D. RUFS: robust forwarder selection in vehicular content-centric networks. IEEE Communications Letters, 2015, 19(9): 1616–1619
https://doi.org/10.1109/LCOMM.2015.2451647
64 Liu H, Lu J W, Feng J J, Zhou J.Learning deep sharable and structural detectors for face alignment. IEEE Transactions on Image Processing, 2017, 26(4): 1666–1678
https://doi.org/10.1109/TIP.2017.2657118
65 Rahmani H, Mian A, Shah M. Learning a deep model for human action recognition from novel viewpoints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 667–681
66 Li Y C, Cao L L, Zhu J, Luo J B. Mining fashion outfit composition using an end-to-end deep learning approach on set data. IEEE Transactions on Multimedia, 2017, 19(8): 1946–1955
67 Shi H, Xu M H, Li R. Deep learning for household load forecasting — a novel pooling deep RNN. IEEE Transactions on Smart Grid, 2018, 9(5): 5271–5280
68 Zhang G, Wen Y G, Zhu J, Chen Q H. On file delay minimization for content uploading to media cloud via collaborative wireless network. In: Proceedings of International Conference on Wireless Communications and Signal Processing. 2011, 1–6
https://doi.org/10.1109/WCSP.2011.6096923
69 Tang J H, Tay W P, Wen Y G. Dynamic request redirection and elastic service scaling in cloud-centric media networks. IEEE Transactions on Multimedia, 2014, 16(5): 1434–1445
https://doi.org/10.1109/TMM.2014.2308726
70 Yang M, Cai J F, Wen Y G, Foh C H. Complexity-rate-distortion evaluation of video encoding for cloud media computing. In: Proceedings of the 17th IEEE International Conference on Networks. 2011, 25–29
71 Wu Y, Wu C, Li B, Qiu X J, Lau F C M. Cloudmedia: when cloud on demand meets video on demand. In: Proceedings of the 31st International Conference on Distributed Computing Systems. 2011, 268–277
https://doi.org/10.1109/ICDCS.2011.50
[1] Haibao CHEN,Song WU,Hai JIN,Wenguang CHEN,Jidong ZHAI,Yingwei LUO,Xiaolin WANG. A survey of cloud resource management for complex engineering applications[J]. Front. Comput. Sci., 2016, 10(3): 447-461.
[2] Jian LIN, Li ZHA, Zhiwei XU. Consolidated cluster systems for data centers in the cloud age: a survey and analysis[J]. Front. Comput. Sci., 2013, 7(1): 1-19.
[3] Hui CHEN, Ping LU, Pengcheng XIONG, Cheng-Zhong XU, Zhiping WANG. Energy-aware application performance management in virtualized data centers[J]. Front Comput Sci, 2012, 6(4): 373-387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed