|
|
A parallel data generator for efficiently generating “realistic” social streams |
Chengcheng YU1, Fan XIA2, Weining QIAN2( ), Aoying ZHOU2 |
1. College of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China 2. School of Data Science and Engineering, East China Normal University , Shanghai 200062, China |
|
|
Abstract A social stream refers to the data stream that records a series of social entities and the dynamic interactions between two entities. It can be employed to model the changes of entity states in numerous applications. The social streams, the combination of graph and streaming data, pose great challenge to efficient analytical query processing, and are key to better understanding users’ behavior. Considering of privacy and other related issues, a social stream generator is of great significance. A framework of synthetic social stream generator (SSG) is proposed in this paper. The generated social streams using SSG can be tuned to capture several kinds of fundamental social stream properties, including patterns about users’ behavior and graph patterns. Extensive empirical studies with several real-life social stream data sets show that SSG can produce data that better fit to real data. It is also confirmed that SSG can generate social stream data continuously with stable throughput and memory consumption. Furthermore, we propose a parallel implementation of SSG with the help of asynchronized parallel processing model and delayed update strategy. Our experiments verify that the throughput of the parallel implementation can increase linearly by increasing nodes.
|
Keywords
social stream
data generator
SSG
parallel generation
|
Corresponding Author(s):
Weining QIAN
|
Just Accepted Date: 01 August 2018
Online First Date: 26 February 2019
Issue Date: 25 June 2019
|
|
1 |
A Zhou, W Qian, H Ma. Social media data analysis for revealing collective behaviors. In: Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining. 2012, 1402
https://doi.org/10.1145/2339530.2339746
|
2 |
C Olston, B Reed, U Srivastava, R Kumar, A Tomkins. Pig latin: a not-so-foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. 2008, 1099–1110
https://doi.org/10.1145/1376616.1376726
|
3 |
A Thusoo, J S Sarma, N Jain, Z Shao, P Chakka, S Anthony, H Liu, P Wyckoff, R Murthy. Hive: a warehousing solution over a mapreduce framework. Proceedings of the VLDB Endowment, 2009, 2(2): 1626–1629
https://doi.org/10.14778/1687553.1687609
|
4 |
C Engle, A Lupher, R Xin, M Zaharia, M J Franklin, S Shenker, I Stoic. Shark: fast data analysis using coarse-grained distributed memory. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. 2012, 689–692
https://doi.org/10.1145/2213836.2213934
|
5 |
J M Pujol, V Erramilli, G Siganos, X Yang, N Laoutaris, P Chhabra, P Rodriguez. The little engine(s) that could: scaling online social networks. ACM Special Interest Group on Data Communication, 2010, 40(4): 375–386
https://doi.org/10.1145/1851182.1851227
|
6 |
A Silberstein, J Terrace, B F Cooper, R Ramakrishnan. Feeding frenzy: selectively materializing users’ event feeds. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. 2010, 831–842
https://doi.org/10.1145/1807167.1807257
|
7 |
O Erling, A Averbuch, J Larribapey, H Chafi, A Gubichev, A Prat-Pérez, M Pham, P A Boncz. The LDBC social network benchmark: interactive workload. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015, 619–630
https://doi.org/10.1145/2723372.2742786
|
8 |
H Ma, J Wei, W Qian, C Yu, A Zhou. On benchmarking online social media analytical queries. In: Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems. 2013, 10
https://doi.org/10.1145/2484425.2484435
|
9 |
M Pham, P A Boncz, O Erling. S3G2: a scalable structure-correlated social graph generator. In: Proceedings of Technology Conference on Performance Evaluation and Benchmarking. 2012, 156–172
|
10 |
F R Chung, L Lu. The average distances in random graphs with given expected degrees. the National Academy of Sciences of the United States of America, 2002, 99(25): 15879–15882
|
11 |
F R Chung, L Lu. Connected components in random graphs with given expected degree Sequences. Annals of Combinatorics, 2002, 6(2): 125–145
https://doi.org/10.1007/PL00012580
|
12 |
H Ma, W Qian, F Xia, X He, J Xu, A Zhou. Towards modeling popularity of microblogs. Frontiers of Computer Science, 2013, 7(2): 171–184
https://doi.org/10.1007/s11704-013-3901-9
|
13 |
S M Ross. Introduction to Probability Models. New York: Academic Press, 2010
|
14 |
G Karypis, V Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 1998, 20(1): 359–392
https://doi.org/10.1137/S1064827595287997
|
15 |
A Z Broder, R Kumar, F Maghoul, P Raghavan, S Rajagopalan, R Stata, A Tomkins, J L Wiener. Graph structure in the Web. In: Proceedings of the 9th International World Wide Web Conferences. 2000, 309–320
https://doi.org/10.1016/S1389-1286(00)00083-9
|
16 |
M E J Newman. The structure and function of complex networks. Siam Review, 2003, 45(2): 167–256
https://doi.org/10.1137/S003614450342480
|
17 |
S N Dorogovtsev, J F Mendes. Evolution of networks. Advances in Physics, 2002, 51(4): 1079–1187
https://doi.org/10.1080/00018730110112519
|
18 |
R Albert, A Barabasi. Statistical mechanics of complex networks. Reviews of Modern Physics, 2001, 74(1): 47–97
https://doi.org/10.1103/RevModPhys.74.47
|
19 |
S H Strogatz. Exploring complex networks. Nature, 2001, 410(6825): 268–276
https://doi.org/10.1038/35065725
|
20 |
M E J Newman. Networks: an introduction. Astronomische Nachrichten, 2010, 327(8): 741–743
|
21 |
D Chakrabarti, C Faloutsos. Graph mining: laws, generators, and algorithms. ACM Computing Surveys, 2006, 38(1): 2
https://doi.org/10.1145/1132952.1132954
|
22 |
M E J Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 2005, 46(5): 323–351
https://doi.org/10.1080/00107510500052444
|
23 |
A Clauset, C R Shalizi, M E J Newman. Power-law distributions in empirical data. Siam Review, 2009, 51(4): 661–703
https://doi.org/10.1137/070710111
|
24 |
J A Coan, D A Sbarra. Social baseline theory: the social regulation of risk and effort. Current Opinion in Psychology, 2015, 1: 87–91
https://doi.org/10.1016/j.copsyc.2014.12.021
|
25 |
J Abello, A L Buchsbaum, J Westbrook. A functional approach to external graph algorithms. Algorithmica, 2002, 32(3): 437–458
https://doi.org/10.1007/s00453-001-0088-5
|
26 |
S Redner. How popular is your paper? An empirical study of the citation distribution. European Physical Journal B, 1998, 4(2): 131–134
https://doi.org/10.1007/s100510050359
|
27 |
H Kwak, C Lee, H Park, S B Moon. What is Twitter, a social network or a news media? In: Proceedings of the 19th International World Wide Web Conferences. 2010, 591–600
https://doi.org/10.1145/1772690.1772751
|
28 |
H Ebel, L Mielsch, S Bornholdt. Scale-free topology of e-mail networks. Physical Review E, 2002, 66(3): 035103
https://doi.org/10.1103/PhysRevE.66.035103
|
29 |
S Brin, L Page. The anatomy of a large-scale hypertextual Web search engine. In: Proceedings of the 19th International World Wide Web Conferences. 2010, 431–440
|
30 |
G Pandurangan, P Raghavan, E Upfal. Using pagerank to characterize Web structure. In: Proceedings of the 8th International Conference on Computing and Combinatorics. 2002, 330–339
https://doi.org/10.1007/3-540-45655-4_36
|
31 |
S L Tauro, C R Palmer, G Siganos, M Faloutsos. A simple conceptual model for the Internet topology. In: Proceedings of Global Communications Conference. 2001, 1667–1671
https://doi.org/10.1109/GLOCOM.2001.965863
|
32 |
M Faloutsos, P Faloutsos, C Faloutsos. On power-law relationships of the Internet topology. ACM Special Interest Group on Data Communication, 1999, 29(4): 251–262
https://doi.org/10.1145/316188.316229
|
33 |
R Albert. Diameter of the World Wide Web. Nature, 1999, 401(6749): 130–131
https://doi.org/10.1038/43601
|
34 |
D J Watts, S H Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440–442
https://doi.org/10.1038/30918
|
35 |
S Srisaard. Mining the Web: discovering knowledge from hypertext data. Online Information Review, 2003, 27(4): 291
|
36 |
C Gkantsidis, M Mihail, E W Zegura. Spectral analysis of Internet topologies. In: Proceedings of the 22nd International Conference on Computer Communications. 2003, 364–374
https://doi.org/10.1109/INFCOM.2003.1208688
|
37 |
H Tangmunarunkit, R Govindan, S Jamin, S Shenker, W Willinger. Network topologies, power laws, and hierarchy. ACM Special Interest Group on Data Communication, 2002, 32(1): 76
https://doi.org/10.1145/510726.510750
|
38 |
A Casteigts, P Flocchini, W Quattrociocchi, N Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 2012, 27(5): 387–408
https://doi.org/10.1080/17445760.2012.668546
|
39 |
N Santoro, W Quattrociocchi, P Flocchini, A Casteigts, F Amblard. Time-varying graphs and social network analysis: temporal indicators and metrics. In: Proceedings of the 3rd AISB Social Networks and Multiagement Systems Symposium. 2011, 32–38
|
40 |
A Ferreira. Building a reference combinatorial model for MANETs. IEEE Network, 2004, 18(5): 24–29
https://doi.org/10.1109/MNET.2004.1337732
|
41 |
P Holme, J Saramki. Temporal networks. Physics Reports, 2012, 519(3): 97–125
https://doi.org/10.1016/j.physrep.2012.03.001
|
42 |
P L Krapivsky, S Redner, F Leyvraz. Connectivity of growing random networks. Physical Review Letters, 2000, 85(21): 4629
https://doi.org/10.1103/PhysRevLett.85.4629
|
43 |
W Quattrociocchi, F Amblard, E Galeota. Selection in scientific networks. Social Network Analysis & Mining, 2012, 2(3): 229–237
https://doi.org/10.1007/s13278-011-0043-7
|
44 |
J Leskovec, J M Kleinberg, C Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKOD International Conference on Knowledge Discovery and Data Mining. 2005, 177–187
https://doi.org/10.1145/1081870.1081893
|
45 |
J Leskovec, J M Kleinberg, C Faloutsos. Graph evolution: densification and shrinking diameters. ACM Transactions on Knowledge Discovery From Data, 2007, 1(1): 2
https://doi.org/10.1145/1217299.1217301
|
46 |
P Erdos, A Rényi. On the evolution of random graphs. Transactions of the American Mathematical Society, 2011, 286(1): 257–274
|
47 |
W Aiello, F Chung, L Lu. A random graph model for massive graphs. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. 2000, 171–180
https://doi.org/10.1145/335305.335326
|
48 |
M E J Newman, S H Strogatz, D J Watts. Random graphs with arbitrary degree distributions and their applications. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 64(2): 026118
https://doi.org/10.1103/PhysRevE.64.026118
|
49 |
H A Simon. On a class of skew distribution function. Biometrika, 1955, 42(3/4): 425–440
https://doi.org/10.2307/2333389
|
50 |
A Barabasi, R Albert. Emergence of scaling in random networks. Science, 1999, 286(5439): 509–512
https://doi.org/10.1126/science.286.5439.509
|
51 |
R Albert, A Barabasi. Topology of evolving networks: local events and universality. Physical Review Letters, 2000, 85(24): 5234–5237
https://doi.org/10.1103/PhysRevLett.85.5234
|
52 |
J M Kleinberg, R Kumar, P Raghavan, S Rajagopalan, A Tomkins. The Web as a graph: measurements, models, and methods. In: Proceedings of International Computing and Combinatorics Conference. 1999, 1–17
https://doi.org/10.1007/3-540-48686-0_1
|
53 |
R Kumar, P Raghavan, S Rajagopalan. Stochastic models for the Web graph. In: Proceedings of the 41st Annual Symosium on Foundations of Computer Science. 2000, 57–65
https://doi.org/10.1109/SFCS.2000.892065
|
54 |
S N Dorogovtsev, J F Mendes, A N Samukhin. Structure of growing networks with preferential linking. Physical Review Letters, 2000, 85(21): 4633–4636
https://doi.org/10.1103/PhysRevLett.85.4633
|
55 |
Q Chen, H Chang, R Govindan, S Jamin, S Shenker, W Willinger. The origin of power laws in Internet topologies revisited. In: Proceedings of the 51st International Conference on Computer Communications. 2002, 608–617
|
56 |
G Bianconi, A L Barabási. Competition and multiscaling in evolving networks. Physics Letters, 2000, 30(1): 37–43
|
57 |
A Barabási, H Jeong, Z Néda, E Ravasz, A Schubert, T Vicsek. Evolution of the social network of scientific collaborations. Physica Astatistical Mechanics and Its Applications, 2002, 311(3): 590–614
https://doi.org/10.1016/S0378-4371(02)00736-7
|
58 |
W Aiello, F Chung, L Lu. Random evolution in massive graphs. Computer, 2001, 510: 519
|
59 |
C Borgs, J Chayes, O Riordan. Directed scale-free graphs. In: Proceedings of the 14th Acm-Siam Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics. 2003, 132–139
|
60 |
B M Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 2002, 6(9): 1617–1622
https://doi.org/10.1109/49.12889
|
61 |
M V Looz, C L Staudt, H Meyerhenke, R Prutkin. Fast generation of complex networks with underlying hyperbolic geometry. 2015, arXiv preprint arXiv:1501.03545
|
62 |
D Chakrabarti, Y Zhan, C Faloutsos. R-MAT: a recursive model for graph mining. In: Proceedings of the 2004 SIAM International Conference on Data Mining. 2004, 442–446
https://doi.org/10.1137/1.9781611972740.43
|
63 |
J Leskovec, C Faloutsos. Scalable modeling of real graphs using kronecker multiplication. In: Proceedings of the 24th International Conference on Machine Learning. 2007, 497–504
https://doi.org/10.1145/1273496.1273559
|
64 |
D Dominguez-Sal, P Urbón-Bayes, A Giménez-Vaó, S Gómez-Villamor, N Martínez-Bazan, J Larriba-Pey. Survey of graph database performance on the HPC scalable graph analysis benchmark. In: Proceedings of the International Conference on Web Age Information Management. 2010, 37–48
https://doi.org/10.1007/978-3-642-16720-1_4
|
65 |
D F Gleich, A B Owen. Moment-based estimation of stochastic kronecker graph parameters. Internet Mathematics, 2012, 8(3): 232–256
https://doi.org/10.1080/15427951.2012.680824
|
66 |
B A Miller, N T Bliss, P J Wolfe. Subgraph detection using eigenvector L1 norms. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems. 2010, 1633–1641
|
67 |
B A Miller, L H Stephens, N T Bliss. Goodness-of-fit statistics for anomaly detection in Chung-Lu random graphs. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 2012, 3265–3268
https://doi.org/10.1109/ICASSP.2012.6288612
|
68 |
D J Mir, R N Wright. A differentially private estimator for the stochastic kronecker graph model. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops. 2012, 167–176
https://doi.org/10.1145/2320765.2320818
|
69 |
J Leskovec, D Chakrabarti, J M Kleinberg, C Faloutsos, Z Ghahramani. Kronecker graphs: an approach to modeling networks. Journal of Machine Learning Research, 2010, 11(Feb): 985–1042
|
70 |
C Seshadhri, A Pinar, T G Kolda. An in-depth study of stochastic kronecker graphs. In: Proceedings of the 11th IEEE International Conference on Data Mining. 2011, 587–596
https://doi.org/10.1109/ICDM.2011.23
|
71 |
A Sala, L Cao, C Wilson, R Zablit, H Zheng, B Y Zhao. Measurementcalibrated graph models for social network experiments. In: Proceedings of the 19th International Conferences onWorldWideWeb. 2010, 861–870
|
72 |
L Akoglu, M Mcglohon, C Faloutsos. RTM: laws and a recursive generator for weighted time-evolving fraphs. In: Proceedings of the 8th IEEE International Conference on Data Mining. 2008, 701–706
https://doi.org/10.1109/ICDM.2008.123
|
73 |
S L Hakimi. On Realizability of a set of integers as degrees of the vertices of a linear graph. I. Journal of the Society for Industrial and Applied Mathematics, 1962, 10(3): 496–506
|
74 |
C Seshadhri, T G Kolda, A Pinar. Community structure and scale free collections of Erdös-Rényi graphs. Physical Review E, 2012, 85(5): 056109
https://doi.org/10.1103/PhysRevE.85.056109
|
75 |
N Du, H Wang, C Faloutsos. Analysis of large multi-modal social networks: patterns and a generator. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery. 2010, 393–408
https://doi.org/10.1007/978-3-642-15880-3_31
|
76 |
T G Armstrong, V Ponnekanti, D Borthakur, M Callaghan. LinkBench: a database benchmark based on the Facebook social graph. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 2013, 1185–1196
https://doi.org/10.1145/2463676.2465296
|
77 |
T G Kolda, A Pinar, T D Plantenga, C Seshadhri. A scalable generative graph model with community structure. SIAM Journal on Scientific Computing, 2014, 36(5): C424–C452
https://doi.org/10.1137/130914218
|
78 |
A Yoo, K Henderson. Parallel generation of massive scale-free graphs. Computer Science, 2010, 7: 123–136
|
79 |
M M Alam, M Khan, M V Marathe. Distributed-memory parallel algorithms for generating massive scale-free networks using preferential attachment model. In: Proceedings of the IEEE International Conference on High Performance Computing Data and Analytics. 2013, 1–12
https://doi.org/10.1145/2503210.2503291
|
80 |
Y C Lo, H Lai, C T Li, S S Lin. Mining and generating large-scaled social networks via MapReduce. Social Network Analysis and Mining, 2013, 3(4): 1449–1469
https://doi.org/10.1007/s13278-013-0124-x
|
81 |
A Hadian, S Nobari, B Minaeibidgoli, Q Qu. ROLL: fast in-memory generation of gigantic scale-free networks. In: Proceedings of the 2016 International Conference on Management of Data. 2016, 1829–1842
https://doi.org/10.1145/2882903.2882964
|
82 |
A Barabási. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435(7039): 207–211
https://doi.org/10.1038/nature03459
|
83 |
J Cho, H Garciamolina. Estimating frequency of change. ACM Transactions on Internet Technology, 2003, 3(3): 256–290
https://doi.org/10.1145/857166.857170
|
84 |
J Cho, H Garciamolina. Synchronizing a database to improve freshness. International Conference on Management of Data, 2000, 29(2): 117–128
https://doi.org/10.1145/342009.335391
|
85 |
S Eubank, H Guclu, V S Kumar, M V Marathe, A Srinivasan, Z Toroczkai, N Wang. Modelling disease outbreaks in realistic urban social networks. Nature, 2004, 429(6988): 180–184
https://doi.org/10.1038/nature02541
|
86 |
B E Brewington, G Cybenko. How dynamic is the Web. In: Proceedings of the 9th International World Wide Web Conferences. 2000, 257–276
https://doi.org/10.1016/S1389-1286(00)00045-1
|
87 |
J G Oliveira, A Barabási. Human dynamics: Darwin and Einstein correspondence patterns. Nature, 2005, 437(7063): 1251
https://doi.org/10.1038/4371251a
|
88 |
N Li, N Zhang, T Zhou. Empirical analysis on temporal statistics of human correspondence patterns. Complex System & Complexity Science, 2008, 387(25): 6391–6394
https://doi.org/10.1016/j.physa.2008.07.021
|
89 |
W Hong, X P Han, T Zhou, B H Wang. Heavy-tailed statistics in short-message communication. Chinese Physics Letters, 2009, 26(2): 028902
https://doi.org/10.1088/0256-307X/26/2/028902
|
90 |
J Candia, M C González, P Wang, T Schoenharl, G Madey, A Barabási. Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical, 2008, 41(22): 224015
https://doi.org/10.1088/1751-8113/41/22/224015
|
91 |
Z Dezsö, E Almaas, A Lukács, B Rácz, I Szakadát, A L Barabási. Dynamics of information access on the Web. Physical Review E, 2006, 73(6): 066132
https://doi.org/10.1103/PhysRevE.73.066132
|
92 |
A Vázquez, J G Oliveira, Z Dezsö, K Goh, I Kondor, A Barabási. Modeling bursts and heavy tails in human dynamics. Physical Review E, 2005, 73(2): 036127
|
93 |
A Gabrielli, G Caldarelli. Invasion percolation and critical transient in the Barabási Model of human dynamics. Physical Review Letters, 2007, 98(20): 208704
https://doi.org/10.1103/PhysRevLett.98.208701
|
94 |
X P Han, T Zhou, B H Wang. Modeling human dynamics with adaptive interest. New Journal of Physics, 2008, 10(7): 073010
https://doi.org/10.1088/1367-2630/10/7/073010
|
95 |
B Goncalves, J J Ramasco. Human dynamics revealed through Web analytics. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 78(2): 026123
https://doi.org/10.1103/PhysRevE.78.026123
|
96 |
R D Malmgren, D B Stouffer, A S L O Campanharo, L A N Amaral. On universality in human correspondence activity. Science, 2009, 325(5948): 1696–1700
https://doi.org/10.1126/science.1174562
|
97 |
K C Sia, J Cho, K Hino, Y Chi, S Zhu, B L Tseng. Monitoring RSS feeds based on user browsing pattern. In: Proceedings of International Conference on Weblogs and Social Media. 2007
|
98 |
K C Sia, J Cho, H K Cho. Efficient monitoring algorithm for fast news alerts. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(7): 950–961
https://doi.org/10.1109/TKDE.2007.1041
|
99 |
D Gruhl, R V Guha, D Liben-Nowell, A Tomkins. Information diffusion through blogspace. In: Proceedings of the 13th International World Wide Web Conferences. 2004, 491–501
https://doi.org/10.1145/988672.988739
|
100 |
J Bollen, H Mao, A Pepe. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proceedings of the International Conference on Weblogs and Social Media. 2011, 450–453
|
101 |
R D Malmgren, D B Stouffer, A E Motter, L A N Amaral. A Poissonian explanation for heavy tails in e-mail communication. the National Academy of Sciences of the United States of America, 2008, 105(47): 18153–18158
|
102 |
A Vazquez. Impact of memory on human dynamics. Physica Astatistical Mechanics and its Applications, 2007, 373: 747–752
https://doi.org/10.1016/j.physa.2006.04.060
|
103 |
W J Stewart. Probability, Markov Chains, Queues, and Simulation: the Mathematical Basis of Performance Modeling. Princeton: Princeton Univers Press, 2009
|
104 |
D M Pennock, G W Flake, S Lawrence, E J Glover, C L Giles. Winners don’t take all: characterizing the competition for links on the Web. the National Academy of Sciences of the United States of America, 2002, 99(8): 5207–5211
|
105 |
Z Bi, C Faloutsos, F Korn. The “DGX” distribution for mining massive, skewed data. In: Proceedings of the 7th ACM SIGKOD International Conference on Knowledge Discovery and Data Mining. 2001, 17–26
https://doi.org/10.1145/502512.502521
|
106 |
M J Welch, U Schonfeld, D He, J Cho. Topical semantics of twitter links. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining. 2011, 327–336
https://doi.org/10.1145/1935826.1935882
|
107 |
W Galuba, K Aberer, D Chakraborty, Z Despotovic, W Kellerer. Outtweeting the twitterers — predicting information cascades in microblogs. In: Proceedings of the 3rd Conference on Online Social Networks. 2010, 3–11
|
108 |
S Asur, B A Huberman. Predicting the future with social media. In: Proceedings of the 2010 IEEE International Conference on Web Intelligence and Intelligent Agent Technology. 2010, 492–499
https://doi.org/10.1109/WI-IAT.2010.63
|
109 |
T Martin, B Ball, B Karrer, M E J Newman. Coauthorship and citation in scientific publishing. 2013, arXiv preprint arXiv:1304.0473
|
110 |
J Xie, C Zhang, M Wu. Modeling microblogging communication based on human dynamics. In: Proceedings of the 8th International Conference on Fuzzy Systems and Knowledge Discovery. 2011, 2290–2294
https://doi.org/10.1109/FSKD.2011.6020045
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|