Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2020, Vol. 14 Issue (1) : 233-235    https://doi.org/10.1007/s11704-019-8190-5
LETTER
Answering range-based reverse kNN and why-not reverse kNN queries
Zhefan ZHONG(), Xin LIN(), Liang HE
Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200062, China
 Download: PDF(185 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Zhefan ZHONG,Xin LIN   
Online First Date: 06 June 2019    Issue Date: 24 September 2019
 Cite this article:   
Zhefan ZHONG,Xin LIN,Liang HE. Answering range-based reverse kNN and why-not reverse kNN queries[J]. Front. Comput. Sci., 2020, 14(1): 233-235.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-019-8190-5
https://academic.hep.com.cn/fcs/EN/Y2020/V14/I1/233
1 F Korn, S Muthukrishnan. Influence sets based on reverse nearest neighbor queries. Journal of Special Interest Group on Management Of Data, 2000, 29(2): 201–212
https://doi.org/10.1145/335191.335415
2 Q T Tran, C Y Chan. How to conquer why-not questions. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. 2010, 15–26
https://doi.org/10.1145/1807167.1807172
3 Z He, E Lo. Answering why-not questions on top-k queries. In: Proceedings of International Conference on Data Engineering. 2012, 750–761
https://doi.org/10.1109/ICDE.2012.8
4 I Stanoi, D Agrawal, A Abbadi. Reverse nearest neighbor queries for dynamic databases. Journal of Special Interest Group on Management of Data, 2000, 29(5): 44–53
5 A Singh, H Ferhatosmanoglu, A Tosun. High dimensional reverse nearest neighbor queries. In: Proceedings of the 12th International Conference on Information Knowledge Management. 2003, 91–98
https://doi.org/10.1145/956880.956882
6 Y Tao, D Papadias, X Lian. Reverse kNN search in arbitrary dimensionality. In: Proceedings of the 30th International Conference on Very Large Data Bases. 2004, 744–755
https://doi.org/10.1016/B978-012088469-8/50066-8
7 N Beckmann, H P Kriegel, R Schneider, B Seeger. The R*-tree: an effcient and robust access method for points and rectangles. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. 1990, 322–331
https://doi.org/10.1145/93605.98741
[1] Article highlights 1 Download
[2] Article highlights 2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed