Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2020, Vol. 14 Issue (4) : 144501    https://doi.org/10.1007/s11704-019-8397-5
RESEARCH ARTICLE
An efficient multipath routing schema in multi-homing scenario based on protocol-oblivious forwarding
Pufang MA1,2, Jiali YOU1,2(), Jinlin WANG1,2
1. National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(552 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the advent of 5G, multi-homing will be an increasingly common scenario, which is expected to increase transmission rates, improve transmission reliability, and reduce costs for users. However, the current routing methods are unable to fully utilize the resources of networks to achieve high-performance data transmission for multi-homed devices. In the current routing mechanism, there is only one destination address in the packet forwarded to the multihomed host. Thus, the packet is difficult to adjust its path on the fly according to the status of the network to achieve better performance. In this paper, we present an efficient routing schema in multi-homing scenario based on protocoloblivious forwarding (POF). In the proposed schema, the packet forwarded to the multi-homed host carries multiple destination addresses to obtain the ability of switching the transmission path; meanwhile, the router dynamically adjusts the path of the packet through the perception of the networkstatus. Experimental results show that our schema could utilize the alternative paths properly and significantly improve the transmission efficiency.

Keywords multi-homing      routing      software-defined networking      protocol-oblivious forwarding     
Corresponding Author(s): Jiali YOU   
Just Accepted Date: 28 May 2019   Issue Date: 11 March 2020
 Cite this article:   
Pufang MA,Jiali YOU,Jinlin WANG. An efficient multipath routing schema in multi-homing scenario based on protocol-oblivious forwarding[J]. Front. Comput. Sci., 2020, 14(4): 144501.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-019-8397-5
https://academic.hep.com.cn/fcs/EN/Y2020/V14/I4/144501
1 Cisco visual networking index. Global mobile data traffic forecast update, 2016-2021. Cisco: San Jose, 2017
2 Y Lim, E M Nahum, D Towsley, D F Towsley, R J Gibbens. ECF: an MPTCP path scheduler to manage heterogeneous paths. Measurement and Modeling of Computer Systems, 2017, 44(1): 33–34
https://doi.org/10.1145/3143314.3078552
3 H Ballani, P Francis. Towards a global IP anycast service. ACM SIGCOMM Computer Communication Review, 2005, 35(4): 301–312
https://doi.org/10.1145/1090191.1080127
4 M Rahman, S Iqbal, J Gao. Load balancer as a service in cloud computing. In: Proceedings of the 8th International Symposium on Service Oriented Software Engineering. 2014, 204–211
https://doi.org/10.1109/SOSE.2014.31
5 D E Eisenbud, C Yi, C Contavalli, C Contavalli, C Smith, R Kononov, E Mannhielscher, A Cilingiroglu, B Cheyney, W Shang, J D Hosein. Maglev: a fast and reliable software network load balancer. In: Proceedings of the 13th USEHIX Symposium on Networked Systems Design and Implementation. 2016, 523–535
6 M Xu, W Tian , R Buyya. A survey on load balancing algorithms for virtual machines placement in cloud computing. Concurrency and Computation: Practice and Experience, 2017, 29(12): e4123
https://doi.org/10.1002/cpe.4123
7 H Farhady, H Lee, A Nakao. Software-defined networking. Computer Networks, 2015, 81: 79–95
https://doi.org/10.1016/j.comnet.2015.02.014
8 N McKeown, T Anderson, H Balakrishnan, G M Parulkar, L L Peterson, J Rexford, S Shenker, J S Turner. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69–74
https://doi.org/10.1145/1355734.1355746
9 P Bosshart, D P Daly, G Gibb, M J Izzard, N Mckeown, J Rexford, C Schlesinger, D Talayco, A Vahdat, G Varghese. P4: programming protocol-independent packet processors. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 87–95
https://doi.org/10.1145/2656877.2656890
10 H Song. Protocol-oblivious forwarding: unleash the power of SDN through a future-proof forwarding plane. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. 2013, 127–132
https://doi.org/10.1145/2491185.2491190
11 H Wang, R Soule, H T Dang, K S Lee, V Shrivastav, N Foster, H Weatherspoon. P4FPGA: a rapid prototyping framework for P4. In: Proceedings of Symposium on SDN Research. 2017, 122–135
https://doi.org/10.1145/3050220.3050234
12 S Laki, D Horpácsi, P Vörös, R Kitlei, D Leskó, M Tejfel. High-speed forwarding: a P4 compiler with a hardware abstraction library for Intel DPDK. In: Proceedings of P4 Workshop. 2016
13 J Bai, J Bi, P Kuang, C Fan, Y Zhou, C Zhang. NS4: enabling programmable data plane simulation. In: Proceedings of the Symposium on SDN Research. 2018
https://doi.org/10.1145/3185467.3185470
14 S Li, D Hu, W Fang, S Ma, C Chen, H Huang, Z Zhu. Protocol obliv ious forwarding (POF): software-defined networking with enhanced programmability. IEEE Network, 2017, 31(2): 58–66
https://doi.org/10.1109/MNET.2017.1600030NM
15 S Li, K Han, N Ansari, Q Bao, D Hu, J Liu, S Yu, Z Zhu. Improving SDN scalability with protocol-oblivious source routing: a system-level study. IEEE Transactions on Network and Service Management, 2018, 15(1): 275–288
https://doi.org/10.1109/TNSM.2017.2766159
16 X Tan, S Zou, H Guo, Y Tian. POFOX: towards controlling the protocol oblivious forwarding network. In: Park J, Yi G, Jeong Y S, Shen H, eds. Advances in Parallel and Distributed Computing and Ubiquitous Services. Singapore: Springer, 2016
https://doi.org/10.1007/978-981-10-0068-3_3
17 X Wang, Y Tian, M Zhao, M Li, L Mei, X Zhang. PNPL: simplifying programming for protocol-oblivious SDN networks. Computer Networks, 2018, 147: 64–80
https://doi.org/10.1016/j.comnet.2018.09.018
18 M Zhao , M Li, L Mei, Y Tian. FlowWatcher: adaptive flow counting for source routing over protocol independent SDN networks. In: Proceedings of the 8th International Conference on Electronics Information and Emergency Communication. 2018, 237–242
https://doi.org/10.1109/ICEIEC.2018.8473501
19 Q Sun, Y Xue, S Li, Z Zhu. Design and demonstration of highthroughput protocol oblivious packet forwarding to support softwaredefined vehicular networks. IEEE Access, 2017, 5: 24004–24011
https://doi.org/10.1109/ACCESS.2017.2767640
20 H Huang, B Niu, S Tang, S Li, S Zhao, K Han, Z Zhu. Realizing highlyavailable, scalable, and protocol-independent vSDN slicing with a distributed network hypervisor system. IEEE Access, 2018, 6: 13513–13522
https://doi.org/10.1109/ACCESS.2018.2813405
21 K Han, S Li, S Tang, H Huang, S Zhao, G Fu, Z Zhu. Applicationdriven end-to-end slicing: when wireless network virtualization orchestrates with NFV-based mobile edge computing. IEEE Access, 2018, 6: 26567–26577
https://doi.org/10.1109/ACCESS.2018.2834623
22 A Gladisch, R Daher, D Tavangarian. Survey on mobility and multihoming in future internet. Wireless Personal Communications, 2014, 74(1): 45–81
https://doi.org/10.1007/s11277-012-0898-6
23 R R Moskowitz, P Nikander, P Jokela. Host identity protocol. RFC 5201, 2008
https://doi.org/10.17487/rfc5201
24 E Nordmark, M Bagnulo. Shim6: level 3 multihoming shim protocol for IPv6. RFC 5533, 2009
https://doi.org/10.17487/rfc5533
25 D Farinacci, D Lewis, D Meyer, V Fuller. The locator/ID separation protocol (LISP). RFC 6830, 2013
https://doi.org/10.17487/rfc6830
26 Stewart R, Metz C. SCTP: new transport protocol for TCP/IP. IEEE Internet Computing, 2001, 5(6): 64–69
https://doi.org/10.1109/4236.968833
27 K Katsaros, M Dianati, R Tafazolli. Analytical model of RTT-aware SCTP. In: Proceedings of International Conference on Connected Vehicles and Expo. 2014, 439–443
https://doi.org/10.1109/ICCVE.2014.7297585
28 Y Nishida, P Natarajan, A Caro. SCTP-PF: a quick failover algorithm for the stream control transmission protocol. IETF, 2016
https://doi.org/10.17487/RFC7829
29 J R Iyengar, P D Amer, R StewartR. Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking, 2006, 14(5): 951–964
https://doi.org/10.1109/TNET.2006.882843
30 S Shailendra, R Bhattacharjee, S K Bose. MPSCTP: a simple and efficient multipath algorithm for SCTP. IEEE Communications Letters, 2011, 15(10): 1139–1141
https://doi.org/10.1109/LCOMM.2011.080811.110866
31 A Ford, C Raiciu, M Handley, O Bonaventure. TCP extensions for multipath operation with multiple addresses. RFC 6824, 2013
https://doi.org/10.17487/rfc6824
32 S Deng, R Netravali, A Sivaraman, H Balakrishnan. WiFi, LTE, or both?: measuring multi-homed wireless internet performance. In: Proceedings of Internet Measurement Conference. 2014, 181–194
https://doi.org/10.1145/2663716.2663727
33 H Nam, D Calin, H Schulzrinne. Towards dynamic MPTCP path control using SDN. In: Proceedings of NetSoft Conference and Workshops. 2016, 286–294
https://doi.org/10.1109/NETSOFT.2016.7502424
34 W Wang, W He, J Su. M2SDN: achieving multipath and multihoming in data centers with software defined networking. In: Proceedings of International Workshop on Quality of Service. 2015, 11–20
https://doi.org/10.1109/IWQoS.2015.7404697
35 M Alizadeh, T Edsall, S Dharmapurikar, R Vaidyanathan, K Chu, A Fingerhut, F Matus, R Pan, N Yadav, G Varghese. CONGA: distributed congestion-aware load balancing for datacenters. ACM SIGCOMM Computer Communication Review, 2014, 44(4): 503–514
https://doi.org/10.1145/2740070.2626316
36 N Katta, M Hira, C Kim, A Sivaraman, J Rexford. Hula: scalable load balancing using programmable data planes. In: Proceedings of the Symposium on SDN Research. 2016
https://doi.org/10.1145/2890955.2890968
37 N Spring, R Mahajan, D Wetherall, T E Anderson. Measuring ISP topologies with Rocketfuel. IEEE ACM Transactions on Networking, 2004, 12(1): 2–16
https://doi.org/10.1109/TNET.2003.822655
38 C HOPPS. Analysis of an equal-cost multipath algorithm. RFC 2992, 2000
https://doi.org/10.17487/rfc2992
39 C Paasch, S Barré. MultipathTCP in the Linux kernel. See Multipathtcp. org Website. 2013
40 M Alizadeh, A G Greenberg, D A Maltz, J Padhye, P Patel, B Prabhakar, S Sengupta, M Sridharan. Data center TCP (DCTCP). ACM SIGCOMM Computer Communication Review, 2010, 40(4): 63–74
https://doi.org/10.1145/1851275.1851192
41 M Dorigo, T Stützle. Ant Colony Optimization: Overview and Recent Advances. Handbook of Metaheuristics, Springer, Cham, 2019, 311–351
https://doi.org/10.1007/978-3-319-91086-4_10
42 B J Asten, N L M van Adrichem, F A Kuipers. Scalability and resilience of software-defined networking: an overview. 2014, arXiv preprint arXiv: 1408.6760
https://doi.org/10.1109/EWSDN.2014.13
[1] FCS-0008-18397-PM_suppl_1 Download
[1] Yudong QIN, Deke GUO, Zhiyao HU, Bangbang REN. Uncertain multicast under dynamic behaviors[J]. Front. Comput. Sci., 2020, 14(1): 130-145.
[2] Weibo YANG, Liangjun KE. An improved fireworks algorithm for the capacitated vehicle routing problem[J]. Front. Comput. Sci., 2019, 13(3): 552-564.
[3] Siyuan TANG, Bei HUA. Increasing multicast transmission rate with localized multipath in software-defined networks[J]. Front. Comput. Sci., 2019, 13(2): 413-425.
[4] Yue WU,Chao LU,Yunji CHEN. A survey of routing algorithm for mesh Network-on-Chip[J]. Front. Comput. Sci., 2016, 10(4): 591-601.
[5] Bing YU,Yanni HAN,Hanning YUAN,Xu ZHOU,Zhen XU. A cost-effective scheme supporting adaptive service migration in cloud data center[J]. Front. Comput. Sci., 2015, 9(6): 875-886.
[6] Lailong LUO,Deke GUO,Wenxin LI,Tian ZHANG,Junjie XIE,Xiaolei ZHOU. Compound graph based hybrid data center topologies[J]. Front. Comput. Sci., 2015, 9(6): 860-874.
[7] Genggeng LIU,Wenzhong GUO,Rongrong LI,Yuzhen NIU,Guolong CHEN. XGRouter: high-quality global router in X-architecture with particle swarm optimization[J]. Front. Comput. Sci., 2015, 9(4): 576-594.
[8] Siyuan LIU,Shuhui WANG,Ce LIU,Ramayya KRISHNAN. Understanding taxi drivers’ routing choices from spatial and social traces[J]. Front. Comput. Sci., 2015, 9(2): 200-209.
[9] Adnan AHMED,Kamalrulnizam ABU BAKAR,Muhammad Ibrahim CHANNA,Khalid HASEEB,Abdul Waheed KHAN. A survey on trust based detection and isolation of malicious nodes in ad-hoc and sensor networks[J]. Front. Comput. Sci., 2015, 9(2): 280-296.
[10] Haizheng YU, Jianfeng MA, Hong BIAN. Reasonable routing in delay/disruption tolerant networks[J]. Front Comput Sci Chin, 2011, 5(3): 327-334.
[11] Xin LI, Zhe LI, . A MANET accessing Internet routing algorithm based on dynamic gateway adaptive selection[J]. Front. Comput. Sci., 2010, 4(1): 143-150.
[12] Xuejun LIU , Jihong GUAN , Guangwei BAI , Haiming LU , . SWER:small world-based efficient routing for wireless sensor networks with mobile sinks[J]. Front. Comput. Sci., 2009, 3(3): 427-434.
[13] Jigang WU , Thambipillai SRIKANTHAN , Kai WANG , . Minimizing interconnect length on reconfigurable meshes[J]. Front. Comput. Sci., 2009, 3(3): 315-321.
[14] Behrouz MAHAM, Mérouane DEBBAH, Are HJ?RUNGNES. Energy-efficient cooperative routing in BER constrained multihop networks[J]. Front Comput Sci Chin, 2009, 3(2): 263-271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed