Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2022, Vol. 16 Issue (4) : 164316    https://doi.org/10.1007/s11704-020-0007-z
RESEARCH ARTICLE
Exploring associations between streetscape factors and crime behaviors using Google Street View images
Mingyu DENG1, Wei YANG2(), Chao CHEN1,3(), Chenxi LIU1
1. School of Computer Science, Chongqing University, Chongqing 400044, China
2. School of Management Science and Real Estate, Chongqing University, Chongqing 400044, China
3. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
 Download: PDF(57723 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Understanding the influencing mechanism of the urban streetscape on crime is fairly important to crime prevention and urban management. Recently, the development of deep learning technology and big data of street view images, makes it possible to quantitatively explore the relationship between streetscape and crime. This study computed eight streetscape indexes of the street built environment using Google Street View images firstly. Then, the association between the eight indexes and recorded crime events was revealed with a poisson regression model and a geographically weighted poisson regression model. An experiment was conducted in downtown and uptown Manhattan, New York. Global regression results show that the influences of Motorization Index on crimes are significant and positive, while the effects of the Light View Index and Green View Index on crimes depend heavily on the socio-economic factors. From a local perspective, the Pedestrian Space Index, Green View Index, Light View IndexandMotorization Index have a significant spatial influence on crimes, while the same visual streetscape factors have different effects on different streets due to the combination differences of socio-economic, cultural and streetscape elements. The key streetscape elements of a given street that affect a specific criminal activity can be identified according to the strength of the association. The results provide both theoretical and practical implications for crime theories and crime prevention efforts.

Keywords crime      Google Street View      streetscape      spatial analysis      geographically weighted poisson regression     
Corresponding Author(s): Wei YANG,Chao CHEN   
Just Accepted Date: 29 May 2020   Issue Date: 18 November 2021
 Cite this article:   
Mingyu DENG,Wei YANG,Chao CHEN, et al. Exploring associations between streetscape factors and crime behaviors using Google Street View images[J]. Front. Comput. Sci., 2022, 16(4): 164316.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-0007-z
https://academic.hep.com.cn/fcs/EN/Y2022/V16/I4/164316
Fig.1  Study area in Manhattan
Datasets Description Data source
Crime data Including crime location, date, time, etc. NYC Open Data
Socio-economic data Demographic, economy, education, housing, family type, etc. American Factfinder
Map vector data Road networks, community boundaries, etc. Open Street Map
GSV image data Google Street View images. Google Street View
Tab.1  Datasets of the study area
Crime variables Uptown Downtown
Min Max Mean S.D. Min Max Mean S.D.
Total 0 51 4.58 5.988 0 68 3.88 6.256
Property 0 28 2.30 3.010 0 56 2.36 4.245
Violence 0 43 2.27 4.285 0 31 1.52 3.070
Daytime 0 31 2.44 3.366 0 43 1.62 3.264
Nighttime 0 34 2.13 3.335 0 58 2.27 3.783
Tab.2  Descriptive statistics for crime events (dependent variables)
Fig.2  GSV panoramas captured in (a) three vertical views and (b) six horizontal views at a sample site
Fig.3  Semantic segmentation results for the GSV images with the DeepLabv3+ model
Covariates Uptown Downtown
Min Max Mean S.D. Min Max Mean S.D.
Population density (people per acre) 34.39 461.66 175.51 71.19 12.05 463.93 115.58 58.65
Vulnerable population/% 10.92 55.76 34.53 9.39 3.26 45.84 22.67 9.60
Media income/k$ 1.25 25.00 10.43 5.79 1.11 25.00 10.33 5.84
Poverty/% 0.00 57.62 12.88 11.25 0.00 78.91 13.93 12.38
Low education/% 0.00 42.53 5.30 7.42 0.00 65.60 8.93 13.75
Unemployment/% 0.00 37.10 7.99 5.75 0.00 39.30 6.76 5.01
Female alone/% 11.07 44.95 27.98 6.38 7.17 38.98 23.14 6.69
Single-parent family/% 0.29 26.16 5.15 5.56 0.13 20.28 2.54 2.37
Housing vacancy/% 0.00 47.71 12.46 8.60 0.30 64.85 9.77 8.49
Tab.3  Descriptive statistics for nine covariates
Fig.4  The results of the Getis-Ord-Gi* for different crime types. (a) Crime_all; (b) Crime_P; (c) Crime_V; (d) Crime_D; (e) Crime_N
Visual factors/% Uptown Downtown
Min Max Mean S.D. Min Max Mean S.D.
PSI 0.00 33.32 5.54 5.01 0.00 59.02 8.21 7.58
GVI 0.00 78.43 13.47 10.95 0.00 61.54 9.16 10.45
BVI 0.00 57.37 19.23 11.45 0.00 68.68 22.25 15.07
SVI 0.00 36.99 10.95 7.97 0.00 42.93 11.63 8.76
LVI 0.00 1.70 0.23 0.19 0.00 3.14 0.33 0.28
SCE 0.00 81.12 33.79 16.92 0.00 78.19 33.04 18.03
MI 0.00 63.12 37.56 17.20 0.00 64.55 35.64 17.51
NAI 0.00 321.63 17.29 25.26 0.00 6066.70 22.09 165.28
Tab.4  Descriptive statistics for eight streetscape indexes (independent variables)
Fig.5  Visualization results of eight streetscape factors in uptown and downtown. (a) Streetscape factors quantification results in uptown; (b) streetscape factors quantification results in downtown
Variables Uptown Downtown
Model 1 (All crime) Model 2(Property) Model 3(Violence) Model 7(Daytime) Model 8(Nighttime) Model 4(All crime) Model 5(Property) Model 6(Violence) Model 9(Daytime) Model 10(Nighttime)
Visual fators
PSI ?0.042** ?0.019 ?0.086** ?0.054*** ?0.027 ?0.044*** ?0.047** ?0.041 ?0.124*** 0.020
GVI ?0.166 ?0.214 ?0.136 ?0.352** 0.065 0.132* 0.026 0.262** 0.235** 0.045
BVI 0.076 0.105 ?0.015 ?0.089 0.279 0.338*** 0.289** 0.303* 0.585*** 0.123
SVI 0.021 0.007 0.044 0.031 0.014 0.055** ?0.007 0.167*** ?0.100** 0.183***
LVI 0.085*** 0.089*** 0.080*** 0.128*** 0.028 ?0.224*** ?0.257*** ?0.165*** ?0.202*** ?0.238***
SCE 0.246 0.355 0.216 0.510 ?0.084 ?0.245** ?0.168 ?0.276 ?0.511*** ?0.015
MI 0.464*** 0.482*** 0.454*** 0.398*** 0.544*** 0.517*** 0.650*** 0.315*** 0.666*** 0.387***
NAI 0.119*** 0.118*** 0.108*** 0.127*** 0.107*** ?0.042** 0.008 ?0.160*** ?0.050 ?0.040*
Covariates
Population density 0.137*** 0.135*** 0.141*** 0.087*** 0.194*** 0.200*** 0.196*** 0.246*** 0.112*** 0.270***
Vulnerable ?0.162*** ?0.099*** ?0.244*** ?0.066** ?0.298*** ?0.161*** ?0.046** ?0.302*** ?0.043* ?0.267***
Media income ?0.031 0.068* ?0.286*** ?0.070* 0.001 ?0.155*** ?0.219*** ?0.112** ?0.227*** ?0.088**
Poverty 0.224*** 0.169*** 0.220*** 0.115*** 0.325*** 0.012 0.002 0.005 0.013 0.009
Below high 0.134*** 0.170*** 0.123*** 0.088** 0.184*** ?0.174*** ?0.382*** 0.079* ?0.209*** ?0.131***
Unemployment ?0.060*** ?0.010 ?0.087*** ?0.053** ?0.063** 0.028** 0.035* 0.039* 0.032 0.026
Housing vacant 0.173*** 0.146*** 0.188*** 0.142*** 0.199*** ?0.004 ?0.007 ?0.017 0.050** ?0.093***
Female alone 0.116*** 0.180*** ?0.020 0.124** 0.104*** 0.078*** 0.005 0.147*** ?0.001 0.151***
Female single 0.253*** ?0.085* 0.356*** 0.199*** 0.315*** 0.205*** ?0.059** 0.369*** 0.157*** 0.243***
Constant
Intercept 1.249*** 0.557*** 0.327*** 0.68*** 0.371*** 1.173*** 0.648*** 0.145*** 0.408*** 0.510***
AICc 3988.4 2355.4 2887.8 2882.6 2329.4 9672.7 6557.6 4960.9 5492.3 6142.7
Adjust R2 0.33 0.27 0.42 0.211 0.372 0.184 0.181 0.24 0.141 0.200
Tab.5  Poisson regression results for different types and times of crime
Variables Uptown (Model 1, 2, 3, 7, 8) Downtown (Model 4, 5, 6, 9, 10)
Min Max Mean S.D. AICc Adjusted R2 Min Max Mean S.D. AICc Adjusted R2
Model 1: (all crime) 2805.2 0.684 Model 4: (all crime) 6721.7 0.471
PSI ?0.1363 0.1288 ?0.0013 0.0412 ?0.0496 0.0253 ?0.0075 0.0178
GVI ?0.5189 0.3927 ?0.0579 0.1508 ?0.1674 0.411 0.0287 0.0993
BVI ?0.5231 0.3317 ?0.0361 0.1328 ?0.1636 0.4214 0.033 0.1024
SVI ?0.1927 0.2266 ?0.0045 0.0617 ?0.0762 0.0996 0.0012 0.0275
LVI ?2.3134 3.1007 0.1034 0.9398 ?1.8426 0.8817 ?0.6014 0.5034
SCE ?0.378 0.459 0.0525 0.1347 ?0.4359 0.1782 ?0.0232 0.1011
MI ?0.0553 0.3624 0.0468 0.0467 ?0.0049 0.086 0.0327 0.0183
NAI ?0.0459 0.0834 0.0072 0.0216 ?0.0711 0.0171 ?0.0078 0.0155
Model 2: (property) 1963.1 0.537 Model 5: (property) 4873.5 0.445
PSI ?0.0599 0.0596 0.002 0.0258 ?0.0514 0.0245 ?0.0095 0.0177
GVI ?0.3488 0.3185 ?0.0329 0.1472 ?0.1812 0.3566 0.0292 0.0999
BVI ?0.3232 0.2819 ?0.0131 0.1265 ?0.1526 0.3933 0.0397 0.1063
SVI ?0.108 0.1258 ?0.0095 0.0405 ?0.0827 0.0801 ?0.0035 0.0302
LVI ?1.3349 1.8515 0.2983 0.6152 ?1.905 0.161 ?0.6806 0.4561
SCE ?0.2959 0.351 0.0274 0.1383 ?0.3807 0.1917 ?0.0267 0.102
MI ?0.0176 0.1425 0.0478 0.0286 ?0.0015 0.0779 0.0402 0.0183
NAI ?0.0176 0.0463 0.0037 0.0139 ?0.0897 0.0246 ?0.0073 0.0186
Model 3: (violence) 2294 0.685 Model 6: (violence) 3846.2 0.47
PSI ?0.1409 0.1321 ?0.0035 0.0482 ?0.0541 0.0447 ?0.0035 0.0208
GVI ?0.5222 0.8727 ?0.0074 0.1943 ?0.1503 0.3608 0.0251 0.0921
BVI ?0.4231 0.8665 0.0235 0.1894 ?0.1828 0.3427 0.0212 0.0906
SVI ?0.2745 1.1034 0.0276 0.155 ?0.047 0.104 0.0179 0.0278
LVI ?3.4847 2.8345 0.2415 0.9886 ?1.9004 0.9853 ?0.5153 0.5348
SCE ?0.7001 0.8923 0.0333 0.1734 ?0.383 0.1649 ?0.0143 0.0924
MI ?0.0567 1.1143 0.0814 0.1635 ?0.0382 0.1091 0.0185 0.0247
NAI ?0.1283 0.1285 0.0059 0.0347 ?0.0803 0.0479 ?0.009 0.0171
Model 7: (daytime) 2286.5 0.563 Model 9: (daytime) 4173.8 0.418
PSI ?0.1347 0.0988 ?0.0063 0.0359 ?0.0608 0.0281 ?0.0155 0.0203
GVI ?0.4559 0.3755 ?0.0806 0.1553 ?0.2375 0.462 0.0384 0.1113
BVI ?0.4314 0.3325 ?0.0678 0.1389 ?0.2055 0.4727 0.0449 0.1163
SVI ?0.1739 0.2196 ?0.0058 0.0546 ?0.0955 0.1264 ?0.0057 0.0372
LVI ?2.4273 2.9505 0.4603 0.8929 ?2.1237 0.6904 ?0.6154 0.525
SCE ?0.3144 0.3969 0.075 0.1419 ?0.4946 0.1913 ?0.0365 0.1142
MI ?0.0443 0.2945 0.0446 0.043 ?0.0072 0.0906 0.0398 0.0215
NAI ?0.0405 0.084 0.0044 0.0209 ?0.0644 0.0284 ?0.0066 0.0165
Model 8: (nighttime) 1992 0.564 Model 10: (nighttime) 4509 0.464
PSI ?0.0712 0.0674 ?0.0001 0.0302 ?0.045 0.0345 ?0.0018 0.0186
GVI ?0.3796 0.2688 ?0.0226 0.1348 ?0.1933 0.3304 0.0288 0.0948
BVI ?0.282 0.3134 0.0107 0.1273 ?0.1725 0.3392 0.0287 0.0961
SVI ?0.1117 0.0543 ?0.0099 0.033 ?0.0445 0.0891 0.006 0.024
LVI ?2.3105 1.1658 ?0.0249 0.5636 ?2.0569 0.8576 ?0.5614 0.4995
SCE ?0.2805 0.3503 0.0145 0.1302 ?0.3447 0.1997 ?0.0191 0.094
MI ?0.0035 0.1505 0.0445 0.0269 ?0.0121 0.0791 0.029 0.0183
NAI ?0.0196 0.0555 0.007 0.0159 ?0.1036 0.0168 ?0.0116 0.0202
Tab.6  GWPR results for different types and times of crime
Fig.6  GWPR local coefficients for (a) GVI, (b) BVI, (c) SVI and (d) LVI
Fig.7  GWPR local coefficients for (a) SCE, (b) PSI, (c) MI, and (d) NAI
1 A Troy , A Nunery , J M Grove . The relationship between residential yard management and neighborhood crime: an analysis from baltimore city and county. Landscape and Urban Planning, 2016, 147 : 78– 87
2 L He , A Páez , D Liu . Built environment and violent crime: an environmental audit approach using google street view. Computers, Environment and Urban Systems, 2017, 66 : 83– 95
3 L Wang , G Lee , I Williams . The spatial and social patterning of property and violent crime in toronto neighbourhoods: a spatial-quantitative approach. ISPRS International Journal of Geo-Information, 2019, 8( 1): 51–
4 P Cozens , T Davies . Crime and residential security shutters in an Australian suburb: exploring perceptions of ‘eyes on the street’, social interaction and personal safety. Crime Prevention and Community Safety, 2013, 15( 3): 175– 191
5 D M Reynald , H Elffers . The future of newman's defensible space theory: linking defensible space and the routine activities of place. European Journal of Criminology, 2009, 6( 1): 25– 46
6 J Q Wilson , G L Kelling . Broken windows. Atlantic Monthly, 1982, 249( 3): 29– 38
7 P Michael Cozens , G Saville , D Hillier . Crime prevention through environmental design (CPTED): a review and modern bibliography. Property Management, 2005, 23( 5): 328– 356
8 P Cozens , T Love . A review and current status of crime prevention through environmental design (CPTED). Journal of Planning Literature, 2015, 30( 4): 393– 412
9 A Chalfin, B Hansen, J Lerner, L Parker. Reducing crime through environmental design: evidence from a randomized experiment of street lighting in new york city. National Bureau of Economic Research, 2019
10 I Lee , S Jung , J Lee , E Macdonald . Street crime prediction model based on the physical characteristics of a streetscape: analysis of streets in low-rise housing areas in South Korea. Environment and Planning B: Urban Analytics and City Science, 2019, 46( 5): 862– 879
11 J D Barnum , J M Caplan , L W Kennedy , L E Piza . The crime kaleidoscope: a cross-jurisdictional analysis of place features and crime in three urban environments. Applied Geography, 2017, 79 : 203– 211
12 M K Wolfe , J Mennis . Does vegetation encourage or suppress urban crime? evidence from Philadelphia, PA. Landscape and Urban Planning, 2012, 108( 2−4): 112– 122
13 H Zhou , L Liu , M Lan , B Yang , Z Wang . Assessing the impact of nightlight gradients on street robbery and burglary in Cincinnati of Ohio state, USA. Remote Sensing, 2019, 11( 17): 1958–
14 J E Patino , J C Duque , J E Pardo-Pascual , L A Ruiz . Using remote sensing to assess the relationship between crime and the urban layout. Applied Geography, 2014, 55 : 48– 60
15 A G Rundle , M D M Bader , C A Richards , K M Neckerman , J O Teitler . Using google street view to audit neighborhood environments. American Journal of Preventive Medicine, 2011, 40( 1): 94– 100
16 Andersson V O, Birck M A F, Araujo R M. Investigating crime rate prediction using street-level images and siamese convolutional neural networks. In: Proceedings of Latin American Workshop on Computational Neuroscience. 2017, 81–93
17 K Fu, Z Chen, C Lu. Streetnet: preference learning with convolutional neural network on urban crime perception. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2018, 269– 278
18 L C Chen, Y Zhu, G Papandreou, F Schroff, H Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. 2018, 801– 818
19 X Li , C Zhang , W Li . Does the visibility of greenery increase perceived safety in urban areas? evidence from the place pulse 1.0 dataset.. ISPRS International Journal of Geo-Information, 2015, 4( 3): 1166– 1183
20 X Li , C Ratti , I Seiferling . Quantifying the shade provision of street trees in urban landscape: a case study in Boston, USA, using google street view. Landscape and Urban Planning, 2018, 169 : 81– 91
21 X Li , C Zhang , W Li , R Ricard , Q Meng , W Zhang . Assessing street-level urban greenery using google street view and a modified green view index. Urban Forestry and Urban Greening, 2015, 14( 3): 675– 685
22 Z Dai , C Hua . The improvement of street space quality measurement method based on streetscape. Planners, 2019, 35( 9): 57– 63
23 J Tang , Y Long . Metropolitan street space quality evaluation: second and third ring of beijing, inner ring of shanghai. Planners, 2017, 33( 2): 68– 73
24 H Yue , X Zhu , X Ye , T Hu , S Kudva . Modelling the effects of street permeability on burglary in Wuhan, China. Applied Geography, 2018, 98 : 177– 183
25 W R Tobler . A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970, 46( sup1): 234– 240
26 C M Fuentes , V Jurado . Spatial pattern of motor vehicle thefts in Ciudad Juárez, Mexico: an analysis using geographically weighted poisson regression. Applied Geography, 2019, 5( 1−2): 176– 191
27 P E Bidanset , J R Lombard . Evaluating spatial model accuracy in mass real estate appraisal: a comparison of geographically weighted regression and the spatial lag model. Cityscape, 2014, 16( 3): 169– 182
28 A Getis . A history of the concept of spatial autocorrelation: a geographer’s perspective. Geographical Analysis, 2008, 40( 3): 297– 309
29 A Cotte Poveda . Violence and economic development in Colombian cities: a dynamic panel data analysis. Journal of International Development, 2012, 24( 7): 809– 827
30 E D Ekkel , S de Vries . Nearby green space and human health: evaluating accessibility metrics. Landscape and Urban Planning, 2017, 157 : 214– 220
31 P F Cabrera-Barona , G Jimenez , P Melo . Types of crime, poverty, population density and presence of police in the metropolitan district of Quito. ISPRS International Journal of Geo-Information, 2019, 8( 12): 558–
32 C M Fuentes , V Hernandez . Housing finance reform in Mexico: the impact of housing vacancy on property crime. International Journal of Housing Policy, 2014, 14( 4): 368– 388
33 C Xu , L Liu , S Zhou , C Jiang . Spatial heterogeneity of micro-spatial factors' effects on street robberies: a case study of DP peninsula. Geographical Research, 2017, 36( 12): 2492– 2504
34 H Wang, D Kifer, C Graif, Z Li. Crime rate inference with big data. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 635– 644
35 C Kadar , I Pletikosa . Mining large-scale human mobility data for long-term crime prediction. EPJ Data Science, 2018, 7( 1): 26–
36 I Setiawan , M Dede , D Sugandi , M A Widiawaty . Investigating urban crime pattern and accessibility using geographic information system in Bandung City. KnE Social Sciences, 2019, 3(21), 535– 548
37 R Steinbach , C Perkins , L Tompson , S Johnson , B Armstrong , J Green , C Grundy , P Wilkinson , P Edwards . The effect of reduced street lighting on road casualties and crime in England and Wales: controlled interrupted time series analysis. Journal of Epidemiol and Community Health, 2015, 69( 11): 1118– 1124
38 C Ye , Y Chen , J Li . Investigating the influences of tree coverage and road density on property crime. ISPRS International Journal of Geo-Information, 2018, 7( 3): 101–
39 T Davies , S D Johnson . Examining the relationship between road structure and burglary risk via quantitative network analysis. Journal of Quantitative Criminology, 2015, 31( 3): 481– 507
40 J Wang , N Wu , X Lu , X Zhao , K Feng . Deep trajectory recovery with fine-grained calibration using kalman filter. IEEE Transactions on Knowledge and Data Engineering, 2021, 33( 3): 921– 934
41 C Chen , S Jiao , S Zhang , W Liu , L Feng , Y Wang . TripImputor: real-time imputing taxi trip purpose leveraging multi-sourced urban data. IEEE Transactions on Intelligent Transportation Systems, 2018, 19( 10): 3292– 3304
42 C Chen , Y Ding , X Xie , S Zhang , Z Wang , L Feng . TrajCompressor: an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change. IEEE Transactions on Intelligent Transportation Systems, 2019, 21( 5): 2012– 2028
43 C Chen , D Zhang , B Guo , X Ma , G Pan , Z Wu . TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Transactions on Intelligent Transportation Systems, 2014, 16( 3): 1259– 1273
44 C Chen , D Zhang , X Ma , B Guo , L Wang , Y Wang , E Sha . Crowddeliver: planning city-wide package delivery paths leveraging the crowd of taxis. IEEE Transactions on Intelligent Transportation Systems, 2016, 18( 6): 1478– 1496
45 J Wang , J Wu , Z Wang , F Gao , Z Xiong . Understanding urban dynamics via context-aware tensor factorization with neighboring regularization. IEEE Transactions on Knowledge and Data Engineering, 2019, 32( 11): 2269– 2283
46 J Wang , Y Wang , D Zhang , Q Lv , C Chen . Crowd-powered sensing and actuation in smart cities: current issues and future directions. IEEE Wireless Communications, 2019, 26( 2): 86– 92
47 J Gao, Y He, Y Wang, X Wang, J Wang, G Peng, X Chu. STAR: spatio-temporal taxonomy-aware tag recommendation for citizen complaints. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019, 1903-1912
48 F Gong , Z Zeng , F Zhang , X Li , E Ng , L K Norford . Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, 2018, 134 : 155– 167
49 H W Kang , H B Kang . Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE, 2017, 12( 4): e0176244–
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed