Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2021, Vol. 15 Issue (3) : 153322    https://doi.org/10.1007/s11704-020-9354-z
RESEARCH ARTICLE
DOF: a generic approach of domain ontology fuzzification
Houda AKREMI1(), Sami ZGHAL1,2
1. Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
2. Faculté des Sciences Juridiques, Université de Jendouba, Jendouba 8189, Tunisia
 Download: PDF(528 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although recent studies on the Semantic Web have focused on crisp ontologies and knowledge representation, they have paid less attention to imprecise knowledge. However, the results of these studies constitute a Semantic Web that can answer requests almost perfectly with respect to precision. Nevertheless, they ensure low recall. As such, we propose in this research work a new generic approach of fuzzification that which allows a semantic representation of crisp and fuzzy data in a domain ontology. In the framework of our real case study, the obtained illustrate that our approach is highly better than the crisp one in terms of completeness, comprehensiveness, generality, comprehension and shareability.

Keywords crisp ontology      fuzzy ontology      fuzzy logic      fuzzy reasoning      domain ontology     
Corresponding Author(s): Houda AKREMI   
Just Accepted Date: 04 April 2020   Issue Date: 27 January 2021
 Cite this article:   
Houda AKREMI,Sami ZGHAL. DOF: a generic approach of domain ontology fuzzification[J]. Front. Comput. Sci., 2021, 15(3): 153322.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-9354-z
https://academic.hep.com.cn/fcs/EN/Y2021/V15/I3/153322
1 T Berners-Lee, J Hendler, O Lassila. The Semantic Web. Scientific American, 2001, 284(5): 34–43
https://doi.org/10.1038/scientificamerican0501-34
2 H Akremi, S Zghal, V Jouhet, G Diallo. Fonto: une nouvelle méthode de la fuzzification d’ontologies. In: Proceedings of 6ièmes Journées Francophone sur les Ontologies. 2016, 111–122
3 T Lukasiewicz, U Straccia. Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics, 2008, 6(4): 291–308
https://doi.org/10.1016/j.websem.2008.04.001
4 U Straccia. Reasoning with fuzzy description logics. Journal of Artificial Intelligence Research, 2001, 14: 137–166
https://doi.org/10.1613/jair.813
5 F Bobillo, U Straccia. Fuzzy ontology representation using OWL 2. International Journal of Approximate Reasoning, 2011, 52(7): 1073–1094
https://doi.org/10.1016/j.ijar.2011.05.003
6 I Horrocks, O Kutz, U Sattler. The even more irresistible SROIQ. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning. 2006, 57–67
7 F Zekri, E Turki, R Bouaziz. Alzfuzzyonto: une ontologie floue pour l’aide à la décision dans le domaine de la maladie d’alzheimer. In: Proceedings of Actes du 18ème Congrés INFORSID. 2015, 83–98
8 H Ghorbel, A Bahri, R Bouaziz. A framework for fuzzy ontology models. In: Proceedings of Journées Francophones sur les Ontologies. 2008, 21–30
9 H Ghorbel, A Bahri, R Bouaziz. Fuzzy ontologies model for Semantic Web. In: Proceedings of the 2nd International Conference on Information and Knowledge Management, eKNow. 2010
10 J Zhai, Y Liang, J Jiang, Y Yu. Fuzzy ontology models based on fuzzy linguistic variable for knowledge management and information retrieval. In: Proceedings of International Conference on Intelligent Information Processing. 2008, 58–67
https://doi.org/10.1007/978-0-387-87685-6_9
11 J Gomez-Romero, F Bobillo, M Ros, M Molina-Solana, M D Ruiz, M J Martín-Bautista. A fuzzy extension of the semantic Building Information Model. Automation in Construction, 2015, 57: 202–212
https://doi.org/10.1016/j.autcon.2015.04.007
12 L A Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1999, 100(1): 9–34
https://doi.org/10.1016/S0165-0114(99)80004-9
13 X Li, J Martínez, G Rubio. A new fuzzy ontology development methodology (FOSM) proposal. IEEE Access, 2016, 4: 7111–7124
https://doi.org/10.1109/ACCESS.2016.2621756
14 L A Zadeh. A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. International Journal of Man-Machine Studies, 1976, 8(3): 249–291
https://doi.org/10.1016/S0020-7373(76)80001-6
15 J A M Molinera, I J P Gálvez, R Wikstrom, E H Viedma, C Carlsson. Designing a decision support system for recommending smartphones using fuzzy ontologies. In: Proceedings of IEEE Intelligent Systems. 2014, 323–334
https://doi.org/10.1007/978-3-319-11310-4_28
16 F Thiessard, F Mougin, G Diallo, V Jouhet, S Cossin, N Garcelon, B Campillo-Gimenez, W Jouini, J Grosjean, P Massari, N Griffon, M Dupuch, F Tayalati, E Dugas, A Balvet, N Grabar, S Pereira, B Frandji, S Darmoni, M Cuggia. RAVEL: retrieval and visualization in electronic health records. In: Mantas J, et al., eds. Quality of Life through Quality of Information. Proceedings of MIE2012. IOS Press, 2012, 194–198
17 G T Papadopoulos, P Mylonas, V Mezaris, Y Avrithis, I Kompatsiaris. Knowledge-assisted image analysis based on context and spatial optimization. International Journal on Semantic Web and Information Systems, 2006, 2(3): 17–36
https://doi.org/10.4018/jswis.2006070102
18 G Diallo. An effective method of large scale ontology matching. Journal of Biomedical Semantics, 2014, 5(1): 44
https://doi.org/10.1186/2041-1480-5-44
19 T R Gruber. Ontology. In: Ling L, Tamer Özsu M, eds. The Encyclopedia of Database Systems. 2009, 1963–1965
https://doi.org/10.1007/978-0-387-39940-9_1318
20 E Sanchez, C Toro, E Carrasco, P Bonachela, C Parra, G Bueno, F Guijarro. A knowledge-based clinical decision support system for the diagnosis of alzheimer disease. In: Proceedings of the 13th IEEE International Conference on e-Health Networking Applications and Services. 2011, 355–361
https://doi.org/10.1109/HEALTH.2011.6026778
21 N D Rodríguez, O L Cadahía, M P Cuéllar, J Lilius, M D Calvo-Flores. A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowledge-Based Systems, 2014, 66: 46–60
https://doi.org/10.1016/j.knosys.2014.04.016
22 S El-Sappagh, M Elmogy, A M Riad. A fuzzy-ontology-oriented casebased reasoning framework for semantic diabetes diagnosis. Artificial Intelligence in Medicine, 2015, 65(3): 179–208
https://doi.org/10.1016/j.artmed.2015.08.003
23 T Quan, S C Hui, A C M Fong. Automatic fuzzy ontology generation for semantic help-desk support. IEEE Transactions on Industrial Informatics, 2006, 2(3): 155–164
https://doi.org/10.1109/TII.2006.873363
24 P Alexopoulos, M Wallace, K Kafentzis, D Askounis. Ikarus-onto: a methodology to develop fuzzy ontologies from crisp ones. Knowledge and Information Systems, 2012, 32(3): 667–695
https://doi.org/10.1007/s10115-011-0457-6
25 J Lukasiewicz. A numerical interpretation of the theory of proposisiton (polish). In: Proceedings of Ruch Filozoficzny. 1970, 129–130
26 F Zhang, J Cheng, Z Ma. A survey on fuzzy ontologies for the Semantic Web. The Knowledge Engineering Review, 2016, 31(3): 278–321
https://doi.org/10.1017/S0269888916000059
27 F Bobillo, U Straccia. Fuzzy DL: an expressive fuzzy description logic reasoner. In: Proceedings of International Conference on Fuzzy Systems. 2008, 923–930
https://doi.org/10.1109/FUZZY.2008.4630480
28 P Bonissone, B Bouchon-Meunier. Introduction to the special issue in memoriam of Lotfi A. Zadeh [Guest editorial]. IEEE Computational Intelligence Magazine, 2019, 14(1): 13–14
https://doi.org/10.1109/MCI.2018.2881781
29 A Khan, J A Doucette, R Cohen, D J Lizotte. Integrating machine learning into a medical decision support system to address the problem of missing patient data. In: Proceedings of the 11th International Conference on Machine Learning and Applications. 2012, 454–457
https://doi.org/10.1109/ICMLA.2012.82
30 H Akremi, S Zghal, G Diallo. Modeling of uncertainty: fuzzification of medical ontology. In: Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics. 2016, 1–4
https://doi.org/10.1145/2912845.2912879
31 A Edkins, W Cushley. The jekyll and hyde nature of antibodies. Biological Sciences Review, 2012, 25(2): 2–5
32 C Civili. Query answering over ontologies specified via database dependencies. In: Proceedings of SIGMOD PhD Symposium. 2014, 36–40
https://doi.org/10.1145/2602622.2602632
33 R Djedidi, M Aufaure. Onto-evoal an ontology evolution approach guided by pattern modeling and quality evaluation. In: Proceedings of International Symposium on Foundations of Information and Knowledge Systems. 2010, 286–305
https://doi.org/10.1007/978-3-642-11829-6_19
34 P Alexopoulos, P Mylonas. Towards vagueness-oriented quality assessment of ontologies. In: Proceedings of the 8th Hellenic Conference on Artificial Intelligence. 2014, 448–453
https://doi.org/10.1007/978-3-319-07064-3_38
35 G Li, L Yan, Z Ma. An approach for approximate subgraph matching in fuzzy rdf graph. Fuzzy Sets and Systems, 2019, 376: 106–126
https://doi.org/10.1016/j.fss.2019.02.021
36 M Plebani, A Aita, A Padoan, L Sciacovelli. Decision support and patient safety. Clinics in Laboratory Medicine, 2019, 39(2): 231–244
https://doi.org/10.1016/j.cll.2019.01.003
37 J C Mohanta, A Keshari. A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation. Applied Soft Computing, 2019, 79: 391–409
https://doi.org/10.1016/j.asoc.2019.03.055
38 C S Lee, W Jian, L K Huang. A fuzzy ontology and its application to news summarization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(5): 859–880
https://doi.org/10.1109/TSMCB.2005.845032
39 S Sani, T N M Aris. Proposal for ontology based approach to fuzzy student model design. In: Proceedings of International Conference on Intelligent Systems, Modelling and Simulation. 2014, 35–37
https://doi.org/10.1109/ISMS.2014.14
40 H B Truong, X H Quach. An overview of fuzzy ontology integration methods based on consensus theory. In: van Do T, Thi H, Nguyen N, eds. Advanced Computational Methods for Knowledge Engineering. Advances in Intelligent Systems and Computing. Springer, Cham, 2014, 217–227
https://doi.org/10.1007/978-3-319-06569-4_16
[1] Highlights Download
[1] Abhishek MAJUMDAR, Arpita BISWAS, Atanu MAJUMDER, Sandeep Kumar SOOD, Krishna Lal BAISHNAB. A novel DNA-inspired encryption strategy for concealing cloud storage[J]. Front. Comput. Sci., 2021, 15(3): 153807-.
[2] Samir ZEGHLACHE,Djamel SAIGAA,Kamel KARA. Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV[J]. Front. Comput. Sci., 2016, 10(4): 657-672.
[3] Chuanping HU,Zheng XU,Yunhuai LIU,Lin MEI. Video structural description technology for the new generation video surveillance systems[J]. Front. Comput. Sci., 2015, 9(6): 980-989.
[4] Ruixuan LI, Kunmei WEN, Xiwu GU, Yuhua LI, Xiaolin SUN, Bing LI. Type-2 fuzzy description logic[J]. Front Comput Sci Chin, 2011, 5(2): 205-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed