Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (2) : 172315    https://doi.org/10.1007/s11704-022-1360-x
RESEARCH ARTICLE
Lightweight axiom pinpointing via replicated driver and customized SAT-solving
Dantong OUYANG1,2, Mengting LIAO1, Yuxin YE1,2()
1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
2. Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun 130012, China
 Download: PDF(3840 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In description logic, axiom pinpointing is used to explore defects in ontologies and identify hidden justifications for a logical consequence. In recent years, SAT-based axiom pinpointing techniques, which rely on the enumeration of minimal unsatisfiable subsets (MUSes) of pinpointing formulas, have gained increasing attention. Compared with traditional Tableau-based reasoning approaches, SAT-based techniques are more competitive when computing justifications for consequences in large-scale lightweight description logic ontologies. In this article, we propose a novel enumeration justification algorithm, working with a replicated driver. The replicated driver discovers new justifications from the explored justifications through cheap literals resolution, which avoids frequent calls of SAT solver. Moreover, when the use of SAT solver is inevitable, we adjust the strategies and heuristic parameters of the built-in SAT solver of axiom pinpointing algorithm. The adjusted SAT solver is able to improve the checking efficiency of unexplored sub-formulas. Our proposed method is implemented as a tool named RDMinA. The experimental results show that RDMinA outperforms the existing axiom pinpointing tools on practical biomedical ontologies such as Gene, Galen, NCI and Snomed-CT.

Keywords axiom pinpointing      description logic      SAT solver     
Corresponding Author(s): Yuxin YE   
Just Accepted Date: 31 December 2021   Issue Date: 02 August 2022
 Cite this article:   
Dantong OUYANG,Mengting LIAO,Yuxin YE. Lightweight axiom pinpointing via replicated driver and customized SAT-solving[J]. Front. Comput. Sci., 2023, 17(2): 172315.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-1360-x
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I2/172315
Syntax Semantics
Top ? ΔI
Conjunction C?D CI?DI
Existential restriction ?r.C {xΔI | ?yΔI:(x,y)rIyCI}
GCI C?D CI?DI
RI r1°...°rn?s r1I°...°rnI?sI
Tab.1  Syntax and semantics of EL+
Fig.1  The power-set of formula Fex
  
  
  
  
  
Fig.2  The number of SAT(UNSAT) instances determined during the calculation of MinAs
LBD 15s 20s 25s 30s
2 38 63 116 137
3 37 77 112 150
4 41 78 116 156
5 34 77 115 145
Tab.2  Solving Horn pinpointing formulas in different LBD parameters
Restart 15s 20s 25s 30s
Glu 34 77 106 136
Luby 35 78 112 156
Tab.3  Solving Horn pinpointing formulas in different restart strategies
Decay 15s 20s 25s 30s
0.600 34 77 112 123
0.850 35 78 118 137
0.950 35 77 123 150
0.999 34 77 120 136
Tab.4  Solving Horn pinpointing formulas in different decay constants
Ontology Not-galen Gene NCI Full-galen Snomed-CT
concepts 2748 20465 27652 23135 361358
GCIs 4379 20466 46800 36544 361086
roles 413 1 0 949 132
RIs 422 1 0 1014 140
Tab.5  Basic parameters of EL+ ontologies
Fig.3  The numbers of satisfiability checks in EL2MUS and RDMinA
No. MinA
1 (implies GO _0044237 GO _0050875) (implies GO _0050875 GO _0009987)
(implies GO _0009225 GO _0006139) (implies GO _0006139 GO _0044237)
(implies GO _0006047 GO _0009225) (implies GO _0006049 GO _0006047)
2 (implies GO _0044237 GO _0050875) (implies GO _0050875 GO _0009987)
(implies GO _0009308 GO _0044237) (implies GO _0006040 GO _0009308)
(implies GO _0006041 GO _0006040) (implies GO _0006047 GO _0006044)
(implies GO _0006044 GO _0006041) (implies GO _0006049 GO _0006047)
3 (implies GO _0044237 GO _0050875) (implies GO _0050875 GO _0009987)
(implies GO _0009308 GO _0044237) (implies GO _0006040 GO _0009308)
(implies GO _0046348 GO _0006040) (implies GO _0006046 GO _0006043)
(implies GO _0006043 GO _0046348) (implies GO _0006049 GO _0006046)
4 (implies GO _0044237 GO _0050875) (implies GO _0050875 GO _0009987)
(implies GO _0009308 GO _0044237) (implies GO _0006040 GO _0009308)
(implies GO _0006041 GO _0006040) (implies GO _0006044 GO _0006041)
(implies GO _0006046 GO _0006044) (implies GO _0006049 GO _0006046)
5 (implies GO _0044237 GO _0050875) (implies GO _0050875 GO _0009987)
(implies GO _0009308 GO _0044237) (implies GO _0006040 GO _0009308)
(implies GO _0006041 GO _0006040) (implies GO _0006046 GO _0006043)
(implies GO _0006043 GO _0006041) (implies GO _0006049 GO _0006046)
6 (implies GO _0044248 GO _0044237) (implies GO _0044237 GO _0050875)
(implies GO _0050875 GO _0009987) (implies GO _0044275 GO _0044265)
(implies GO _0044265 GO _0044248) (implies GO _0046348 GO _0044275)
(implies GO _0006046 GO _0006043) (implies GO _0006043 GO _0046348)
(implies GO _0006049 GO _0006046)
Tab.6  The MinAs of axiom (implies GO_0006049 GO_0009987)
Fig.4  Numbers of solved queries within specified time durations with RDMinA, RDMinA+ and other methods
Ontology Query (implies) RDMinA | RDMinA+ | EL2MUS | EL2MCS | SATPin
MinAs/time (s)
Not-galen (UlnarArtery (some DomainAttribute discrete)) 50/2.57637 | 50/2.56854 | 46/2.55997 | 46/2.67136 | 42/3.87245
(UnstableKneeJoint (some hasFeature discrete)) 23/0.94485 | 23/0.93892 | 20/2.76455 | 20/2.92946 | 18/4.02704
(UnstableKneeJoint (some DomainAttribute atLeastPaired)) 43/2.39912 | 43/2.36873 | 43/2.58487 | 43/2.81975 | 43/3.98967
(UnstableKneeJoint (some Attribute SynovialFluid)) 26/1.22225 | 26/1.14927 | 25/1.55204 | 25/1.60832 | 24/2.10355
(UretericValve (some ModifierAttribute discrete)) 45/1.66309 | 45/1.65819 | 41/2.77535 | 41/2.91820 | 32/2.02275
(3951 (some Attribute discrete)) 54/1.90866 | 54/1.87197 | 52/0.89842 | 52/0.12644 | 52/1.75614
(Uterus (some ModifierAttribute discrete)) 63/2.56582 | 63/2.55095 | 59/2.89309 | 59/2.97068 | 53/4.19345
(4275 (some ModifierAttribute 4)) 58/1.90167 | 58/1.89516 | 48/1.08847 | 48/1.68469 | 42/1.36984
(externalCarotidArtery (some ModifierAttribute discrete)) 57/0.99258 | 57/0.97479 | 45/2.65750 | 45/2.98762 | 41/3.61331
(KneeJointRecessus 6843) 34/1.01884 | 34/1.01785 | 32/1.56521 | 32/1.82874 | 31/2.24979
Gene (GO _0006200 GO _0044237) 37/0.14907 | 37/0.14697 | 37/0.16902 | 37/0.25901 | 37/0.31353
(GO _0042524 GO _0008150) 66/2.03077 | 66/2.02382 | 64/1.83383 | 64/1.91177 | 50/1.94429
(GO _0042524 (some PART _OF GO _0044237)) 13/0.01201 | 13/0.01178 | 13/0.02915 | 13/0.03808 | 13/0.06847
(GO _0042524 GO _0051244) 15/0.00251 | 15/0.00248 | 15/0.07874 | 15/0.09914 | 15/0.13205
(GO _0009255 GO _0008150) 5/0.000493 | 5/0.000470 | 5/0.000766 | 5/0.000785 | 5/0.001381
(GO _0045364 GO _0050789) 43/1.40331 | 43/1.39492 | 42/0.36782 | 42/0.40731 | 42/0.69922
(GO _0051605 GO _0008150) 12/0.00964 | 12/0.00951 | 12/0.01526 | 12/0.01735 | 12/0.03197
(GO _0019122 GO _0007582) 18/0.00397 | 18/0.00386 | 18/0.00687 | 18/0.00683 | 18/0.00813
(GO _0042423 GO _0008150) 24/1.77301 | 24/1.73216 | 23/2.47329 | 23/2.53816 | 23/3.05039
(GO _0046050 GO _0008152) 58/0.18918 | 58/0.18785 | 50/0.09748 | 50/0.10539 | 44/0.22849
NCI (JejunalCarcinoidTumor NeuroepithelialNeoplasm) 5/0.000416 | 5/0.000401 | 5/0.000644 | 5/0.000826 | 5/0.001446
(InvasivePapillaryUrothelialCarcinoma NeoplasmbyMorphology) 11/0.01508 | 11/0.01499 | 11/0.01945 | 11/0.03172 | 11/0.06114
(UrothelialPapilloma DisorderbySite) 5/0.000669 | 5/0.000649 | 5/0.000908 | 5/0.000939 | 5/0.002868
(LimitedStageSmallCellLungCarcinoma Neoplasm) 15/0.17177 | 15/0.16973 | 15/0.20979 | 15/0.27185 | 15/0.51188
(LaryngealParaganglioma DiseasesandDisorders) 19/0.00256 | 19/0.00249 | 19/1.94168 | 19/2.14869 | 19/2.20942
(IsletCellAdenomatosis DiseasesandDisorders) 12/0.00117 | 12/0.00107 | 12/0.00151 | 12/0.00195 | 12/0.00457
(UrothelialPapilloma Neoplasm) 5/0.000421 | 5/0.000411 | 5/0.000514 | 5/0.000329 | 5/0.000772
(LacrimalGlandSquamousCellCarcinoma Neoplasm) 6/0.000472 | 6/0.000466 | 6/0.000603 | 6/0.000654 | 6/0.001534
(InvasivePapillaryUrothelialCarcinoma UrinaryTractDisorder) 8/0.001496 | 8/0.001445 | 8/0.002244 | 8/0.002576 | 8/0.004210
(LaryngealNeuroendocrineNeoplasm DiseasesandDisorders) 9/0.000897 | 9/0.000855 | 9/0.001226 | 9/0.001327 | 9/0.002331
Full-galen (StatusAttribute pathological)) 28/2.54727 | 28/2.52973 | 28/3.78554 | 28/3.92731 | 28/4.94193
(LowLeftHeartAtrium PartOfInternalOrgan) 39/2.72893 | 39/2.70894 | 26/0.74585 | 26/0.79057 | 23/0.95182
(HighLeftHeartAtrium PartOfInternalOrgan) 27/0.80294 | 27/0.78173 | 24/2.32285 | 24/2.15073 | 24/2.59313
(LeftAtrialMuscle Anonymous-277) 22/1.90196 | 22/1.88072 | 13/0.06094 | 13/0.06512 | 13/0.19511
(BrainDamage 48429) 12/0.61242 | 12/0.60381 | 12/0.64510 | 12/0.68918 | 12/1.04743
(SubendocardialMyocardialInfarction 4527) 32/0.86757 | 32/0.82174 | 29/1.69117 | 29/1.78089 | 28/2.00294
(CavityOfHeartVentricle (some InverseModifierAttribute 6980)) 155/2.1554 | 155/2.1119 | 103/2.8189 | 98/2.08881 | 90/3.27395
(CavityOfHeartChamber (some isSpaceDefinedBy 66824)) 14/0.07576 | 14/0.07439 | 14/0.11545 | 14/0.13179 | 14/0.28738
(CerebralInfarct 4527) 33/0.14689 | 33/0.14559 | 32/2.30137 | 32/2.91248 | 28/3.07785
(CavernousVenousSinus 69910) 56/1.82552 | 56/1.75145 | 37/2.96951 | 36/2.99104 | 31/2.84716
Snomed-CT (snomed.info/id/174998002 snomed.info/id/71388002) 48/0.02581 | 48/0.02563 | 48/0.97232 | 48/1.13112 | 42/1.71093
(snomed.info/id/449151004 snomed.info/id/387713003) 8/0.000722 | 8/0.000698 | 8/0.000961 | 8/0.001436 | 8/0.002505
(snomed.info/id/174994000 snomed.info/id/138875005) 15/0.00249 | 15/0.00236 | 15/0.00334 | 15/0.00382 | 15/0.00563
(snomed.info/id/174998002 snomed.info/id/118672003) 12/0.00095 | 12/0.00093 | 12/0.00162 | 12/0.00185 | 12/0.00383
(snomed.info/id/17500001 snomed.info/id/51833009) 9/0.002028 | 9/0.001915 | 9/0.002158 | 9/0.002356 | 9/0.005285
(snomed.info/id/175007008 snomed.info/id/112802009) 41/0.49343 | 41/0.49272 | 34/1.84168 | 34/1.73155 | 29/1.00441
(snomed.info/id/175007008 snomed.info/id/363320004) 31/0.32994 | 31/0.31383 | 31/0.36657 | 31/0.39614 | 31/0.62087
(snomed.info/id/232719007 snomed.info/id/362958002) 105/0.3526 | 105/0.3509 | 104/1.3431 | 104/1.4195 | 98/1.65211
(snomed.info/id/3546002 snomed.info/id/387713003) 109/1.0945 | 109/1.0843 | 64/1.87044 | 64/1.88579 | 63/2.02706
(snomed.info/id/3546002 snomed.info/id/118672003) 81/1.57214 | 81/1.56302 | 77/0.87345 | 76/0.91678 | 76/1.39112
Tab.7  The number of MinAs in performing RDMinA, RDMinA+ and EL2MUS on EL+ ontologies (excerpts)
  
  
  
1 F, Baader D, Calvanese D L, Mcguinness, et al.. The Description Logic Handbook. Cambridge University Press, 2007
2 F, Baader R, Peñaloza B Suntisrivaraporn. Pinpointing in the description logic EL+. In: Proceedings of the 30th Annual German Conference on Artificial Intelligence. 2007, 52– 67
3 F, Baader B Suntisrivaraporn. Debugging snomed CT using axiom pinpointing in the description logic EL+. In: Proceedings of the 3rd International Conference on Knowledge Representation in Medicine. 2008, 1
4 B, Suntisrivaraporn F, Baader S, Schulz K Spackman. Replacing SEP-Triplets in SNOMED CT using tractable description logic operators. In: Proceedings of the 11th Conference on Artificial Intelligence in Medicine. 2007, 287– 291
5 F, Baader S, Brandt C Lutz. Pushing the EL envelope . In: Proceedings of the 19th International Joint Conference on Artificial Intelligence. 2005, 364– 369
6 R, Sebastiani M Vescovi. Axiom pinpointing in lightweight description logics via horn-sat encoding and conflict analysis. In: Proceedings of the 22nd International Conference on Automated Deduction. 2009, 84– 99
7 M F, Arif C, Mencía J Marques-Silva. Efficient axiom pinpointing with EL2MCS. In: Proceedings of the 38th Annual German Conference on Artificial Intelligence. 2015, 225– 233
8 M F, Arif C, Mencía J Marques-Silva. Efficient MUS enumeration of Horn formulae with applications to axiom pinpointing. In: Proceedings of the 18th International Conference on Theory and Applications of Satisfiability Testing. 2015, 324– 342
9 N, Manthey R, Peñaloza S Rudolph. Efficient axiom pinpointing in EL using SAT technology . In: Proceedings of the 29th International Workshop on Description Logics. 2016
10 M F, Arif C, Mencía A, Ignatiev N, Manthey R, Peñaloza J Marques-Silva. BEACON: an efficient SAT-based tool for debugging EL+ ontologies . In: Proceedings of the 19th International Conference on Theory and Applications of Satisfiability Testing. 2016, 521– 530
11 A, Ignatiev J, Marques-Silva C, Mencía R Peñaloza. Debugging EL+ ontologies through horn MUS enumeration . In: Proceedings of the 30th International Workshop on Description Logics. 2017, 1
12 Y, Kazakov P Skočovský. Enumerating justifications using resolution. In: Proceedings of the 9th International Joint Conference on Automated Reasoning. 2018, 609– 626
13 M, Gao Y, Ye D, Ouyang B Wang. Finding justifications by approximating core for large-scale ontologies. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 6432– 6433
14 N, Manthey R, Peñaloza S Rudolph . SATPIN: Axiom pinpointing for lightweight description logics through incremental SAT. KI-Künstliche Intelligenz, 2020, 34( 3): 389– 394
15 Y, Ye X, Cui D Ouyang . Extracting a justification for OWL ontologies by critical axioms. Frontiers of Computer Science, 2020, 14( 4): 144305
16 J, Gao D T, Ouyang Y Ye . Exploring duality on ontology debugging. Applied Intelligence, 2020, 50( 2): 620– 633
17 N, Sörensson N Een. MiniSat v1.13- A SAT solver with conflict-clause minimization. In: Proceedings of the 8th Conference on Theory and Applications of Satisfiability Testing. 2005, 502– 518
18 M Minoux. LTUR: a simplified linear-time unit resolution algorithm for Horn formulae and computer implementation. Information Processing Letters, 1988, 29(1): 1– 12
19 F, Baader C, Lutz B Suntisrivaraporn. Efficient reasoning in EL+. In: Proceedings of the 2006 International Workshop on Description Logics. 2006, 15
20 J, Bailey P J Stuckey. Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Proceedings of the 7th International Symposium on Practical Aspects of Declarative Languages. 2005, 174– 186
21 J, Bendík N, Benes I, Cerná J Barnat. Tunable online MUS/MSS enumeration. In: Proceedings of the 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. 2016, 50: 1– 50: 13
22 N, Narodytska N, Bjørner M C, Marinescu M Sagiv. Core-guided minimal correction set and core enumeration. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018, 1353– 1361
23 J, Bendík I, Černá N Beneš. Recursive online enumeration of all minimal unsatisfiable subsets. In: Proceedings of the 16th International Symposium on Automated Technology for Verification and Analysis. 2018, 143– 159
24 J, Bendík I Černá. Replication-guided enumeration of minimal unsatisfiable subsets. In: Proceedings of the 26th International Conference on Principles and Practice of Constraint Programming. 2020, 37– 54
25 J, Bendík I Černá. MUST: Minimal unsatisfiable subsets enumeration tool. In: Proceedings of the 26th International Conferences on Tools and Algorithms for the Construction and Analysis of Systems. 2020, 135– 152
26 R, Peñaloza B Sertkaya. On the complexity of axiom pinpointing in the EL family of description logics. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning. 2010, 280– 289
27 J, Marques-Silva A, Ignatiev C, Mencía R Peñaloza. Efficient reasoning for inconsistent horn formulae. In: Proceedings of the 15th European Conference on Logics in Artificial Intelligence. 2016, 336– 352
28 A, Belov J Marques-Silva. MUSer2: an efficient MUS extractor. Journal on Satisfiability, Boolean Modeling and Computation, 2012, 8(3–4): 123– 128
29 F, Bacchus G Katsirelos. Using minimal correction sets to more efficiently compute minimal unsatisfiable sets. In: Proceedings of the 27th International Conference on Computer Aided Verification. 2015, 70– 86
30 P, Kilby J, Slaney S, Thiébaux T Walsh. Backbones and backdoors in satisfiability. In: Proceedings of the 20th National Conference on Artificial Intelligence. 2005, 1368– 1373
31 G, Audemard L Simon. Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. 2009, 399– 404
32 M W, Moskewicz C F, Madigan Y, Zhao L, Zhang S Malik. Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference. 2001, 530– 535
33 J H, Liang V, Ganesh E, Zulkoski A, Zaman K Czarnecki. Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Proceedings of the 11th International Haifa Verification Conference on Hardware and Software: Verification and Testing. 2015, 225– 241
34 C Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT. In: Proceedings of the 18th International Conference on Theory and Applications of Satisfiability Testing. 2015, 307– 323
35 A, Morgado M, Liffiton J Marques-Silva. MaxSAT-based MCS enumeration. In: Proceedings of the 8th International Haifa Verification Conference on Hardware and Software: Verification and Testing. 2012, 86– 101
36 M H, Liffiton K A Sakallah. Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning, 2008, 40(1): 1– 33
37 M H, Liffiton A, Previti A, Malik J Marques-Silva. Fast, flexible MUS enumeration. Constraints, 2016, 21(2): 223– 250
[1] FCS-21360-OF-DO_suppl_1 Download
[1] Yuxin YE, Xianji CUI, Dantong OUYANG. Extracting a justification for OWL ontologies by critical axioms[J]. Front. Comput. Sci., 2020, 14(4): 144305-.
[2] Dantong OUYANG, Xianji CUI, Yuxin YE. Integrity constraints in OWL ontologies based on grounded circumscription[J]. Front Comput Sci, 2013, 7(6): 812-821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed