Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (3) : 183311    https://doi.org/10.1007/s11704-023-2427-z
RESEARCH ARTICLE
Uncertain knowledge graph embedding: an effective method combining multi-relation and multi-path
Qi LIU1,2,3, Qinghua ZHANG1,2,3(), Fan ZHAO1,2,3, Guoyin WANG1,2,3
1. Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
3. Chongqing Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
 Download: PDF(7662 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Uncertain Knowledge Graphs (UKGs) are used to characterize the inherent uncertainty of knowledge and have a richer semantic structure than deterministic knowledge graphs. The research on the embedding of UKG has only recently begun, Uncertain Knowledge Graph Embedding (UKGE) model has a certain effect on solving this problem. However, there are still unresolved issues. On the one hand, when reasoning the confidence of unseen relation facts, the introduced probabilistic soft logic cannot be used to combine multi-path and multi-step global information, leading to information loss. On the other hand, the existing UKG embedding model can only model symmetric relation facts, but the embedding problem of asymmetric relation facts has not be addressed. To address the above issues, a Multiplex Uncertain Knowledge Graph Embedding (MUKGE) model is proposed in this paper. First, to combine multiple information and achieve more accurate results in confidence reasoning, the Uncertain ResourceRank (URR) reasoning algorithm is introduced. Second, the asymmetry in the UKG is defined. To embed asymmetric relation facts of UKG, a multi-relation embedding model is proposed. Finally, experiments are carried out on different datasets via 4 tasks to verify the effectiveness of MUKGE. The results of experiments demonstrate that MUKGE can obtain better overall performance than the baselines, and it helps advance the research on UKG embedding.

Keywords knowledge representation      uncertain knowledge graph      multi-relation embedding      uncertain reasoning     
Corresponding Author(s): Qinghua ZHANG   
Just Accepted Date: 02 March 2023   Issue Date: 27 April 2023
 Cite this article:   
Qi LIU,Qinghua ZHANG,Fan ZHAO, et al. Uncertain knowledge graph embedding: an effective method combining multi-relation and multi-path[J]. Front. Comput. Sci., 2024, 18(3): 183311.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-023-2427-z
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I3/183311
Fig.1  The inference example of URR
Fig.2  The computation of circular correlation [48]
Fig.3  Global reasoning for unseen relation facts in MUKGE
Fig.4  The resource flow in the URR algorithm
i-th-iteration 0 1 2 3 4
Interstellar 1 1 1 1 1
Paramount Pictures 0 0.166 0.166 0.166 0.166
Christopher Nolan 0 0.325 0.325 0.325 0.325
Entities London 0 0.325 0.468 0.468 0.468
United States 0 0.001 0.117 0.117 0.117
Britain 0 0.001 0.307 0.442 0.442
English 0 0.001 0.259 0.487 0.632
Tab.1  The computation of an inference example by URR
Fig.5  The overall framework of MUKGE
Dataset |E| |R| |Δ+| |Δ?| |Δasy+| Avg(s) Std(s)
CN15k 15,000 36 241,158 7,927 1,940 0.629 0.232
NL27k 27,221 404 175,412 32,513 2,478 0.797 0.242
PPI5k 4,999 7 271,666 85,299 38,836 0.415 0.213
CN15k_ASY 15,000 36 241,158 7,927 41,190 0.606 0.321
NL27k_ASY 27,221 404 175,412 32,513 98,712 0.687 0.34
PPI5k_ASY 4,999 7 271,666 85,299 226,395 0.268 0.241
Tab.2  The statistics of datasets
Dataset CN15k NL27k PPI5k
Metrics MSE MAE MSE MAE MSE MAE
URGE 10.32 22.72 7.48 11.35 1.44 6.00
UKGErect 8.61 19.90 2.36 6.90 0.95 3.79
UKGElogi 9.86 20.74 3.43 7.93 0.96 4.07
UKGsE 7.71 21.34 6.58 17.54 0.95 5.72
BEUrRE 7.80 20.03 2.37 7.12 0.41 3.32
MUKGEurr? 10.35 20.65 2.65 6.16 0.50 3.61
MUKGEn? 19.08 28.09 2.79 6.84 0.66 4.21
MUKGErect 7.05 19.73 1.63 6.76 0.35 3.02
MUKGElogi 9.99 20.42 2.11 6.12 0.36 2.50
Tab.3  The results of confidence prediction
Fig.6  The MSEs (×10?2) and MAEs (×10?2) of MUKGE and its contrast models in the confidence prediction task. (a) is the MSEs of models on CN15k, NL27k and PPI5k. (b) is the MAEs of models on CN15k, NL27k and PPI5k
Dataset CN15k NL27k PPI5k
Metrics Linear Exp. Linear Exp. Linear Exp.
TransE 0.601 0.591 0.730 0.722 0.710 0.700
DistMult 0.689 0.677 0.911 0.897 0.894 0.880
ComplEx 0.723 0.712 0.921 0.913 0.896 0.881
URGE 0.572 0.570 0.593 0.593 0.726 0.723
UKGErect 0.773 0.775 0.939 0.942 0.946 0.946
UKGElogi 0.789 0.788 0.955 0.956 0.970 0.969
UKGsE 0.780 0.795 0.895 0.897 0.969 0.970
BEUrRE 0.796 0.795 0.942 0.942 0.951 0.952
MUKGEurr? 0.810 0.812 0.937 0.939 0.983 0.982
MUKGEn? 0.748 0.749 0.914 0.918 0.973 0.971
MUKGErect 0.832 0.835 0.877 0.882 0.959 0.958
MUKGElogi 0.849 0.850 0.945 0.947 0.991 0.990
Tab.4  The results of relation fact ranking
Fig.7  The NDCGs(Linear and Exp.) of MUKGE and UKGE as training proceeds on CN15K, NL27k and PPI5k. (a)?(c) are the NDCGs(Linear) of models on CN15k, NL27k and PPI5k; (d)?(f) are the NDCGs(Exp.) of models on CN15k, NL27k and PPI5k
Fig.8  The frequency distribution of confidence on CN15K, NL27k and PPI5k. (a) is the frequency distribution of confidence on CN15K; (b) is the frequency distribution of confidence on NL27k; (c) is the frequency distribution of confidence on PPI5k
Dataset CN15k NL27k PPI5k
Metrics F-1 Accu. F-1 Accu. F-1 Accu.
TransE 23.1 67.9 65.1 53.4 83.2 98.5
DistMult 27.9 71.1 72.1 70.1 86.9 97.1
ComplEx 18.9 73.2 63.3 53.4 83.2 98.9
URGE 21.2 86.0 83.6 88.7 85.2 98.6
UKGErect 28.8 90.4 92.3 95.2 95.1 99.4
UKGElogi 25.9 90.1 88.4 93.0 94.5 99.5
UKGsE 28.2 88.7 91.5 93.7 94.2 98.7
BEUrRE 28.7 89.9 92.4 95.6 95.0 99.4
MUKGEurr? 25.3 89.7 88.3 93.0 94.6 99.5
MUKGEn? 24.0 89.9 87.8 93.9 93.7 99.1
MUKGErect 32.0 90.4 87.5 92.5 94.7 99.3
MUKGElogi 28.3 90.2 91.2 94.4 95.3 99.7
Tab.5  The results of relation fact classification
Fig.9  F-1 scores (%) and Accus. (%) of MUKGE and the contrast models of MUKGE. (a) is the F-1 scores of models on CN15k, NL27k and PPI5k; (b) is the Accus. of models on CN15k, NL27k and PPI5k
Dataset CN15k_ASY NL27k_ASY PPI5k_ASY
Metrics MSE MAE MSE MAE MSE MAE
UKGErect 9.09 21.92 6.09 14.17 3.41 12.88
UKGElogi 13.49 24.90 7.44 14.50 4.85 14.97
UKGsE 10.25 25.18 12.06 22.42 5.30 19.87
BEUrRE 8.75 21.43 5.73 12.71 2.58 11.23
MUKGEurr? 13.13 23.95 3.68 8.78 2.24 8.55
MUKGEn? 14.69 24.63 4.74 10.82 2.36 8.39
MUKGErect 8.25 20.96 2.69 9.62 1.99 9.64
MUKGElogi 11.58 21.90 3.91 8.33 1.43 5.19
Tab.6  Confidence prediction of asymmetric relation fact embedding
Dataset CN15k_ASY NL27k_ASY PPI5k_ASY
Metrics Linear Exp. Linear Exp. Linear Exp.
UKGErect 0.683 0.683 0.773 0.769 0.783 0.773
UKGElogi 0.717 0.715 0.827 0.823 0.757 0.746
UKGsE 0.663 0.663 0.724 0.718 0.736 0.724
BEUrRE 0.721 0.722 0.876 0.872 0.849 0.834
MUKGEurr? 0.749 0.754 0.843 0.850 0.833 0.833
MUKGEn? 0.732 0.733 0.837 0.840 0.812 0.813
MUKGErect 0.796 0.799 0.882 0.886 0.839 0.835
MUKGElogi 0.813 0.813 0.935 0.939 0.906 0.903
Tab.7  Relation fact ranking of asymmetric relation fact embedding
Dataset CN15k_ASY NL27k_ASY PPI5k_ASY
Metrics F-1 Accu. F-1 Accu. F-1 Accu.
UKGErect 12.3 89.9 78.4 89.7 6.4 97.5
UKGElogi 9.5 89.9 74.3 87.4 5.5 96.4
UKGsE 8.7 88.5 72.6 81.5 5.2 95.6
BEUrRE 16.7 89.8 82.9 92.6 19.8 98.6
MUKGEurr? 14.8 90.1 83.0 92.8 18.7 98.4
MUKGEn? 14.9 90.0 82.0 92.4 20.0 98.0
MUKGErect 15.7 90.4 83.5 96.3 19.5 99.2
MUKGElogi 17.0 90.3 82.7 96.1 21.3 99.0
Tab.8  Relation fact classification of asymmetric relation fact embedding
Fig.10  The MSEs (×10?2) and MAEs (×10?2) of MUKGE and UKGE in the confidence prediction task on CN15k_ASY, NL27k_ASY and PPI5k_ASY. (a) is the MSEs of models on CN15k_ASY, NL27k_ASY and PPI5k_ASY; (b) is the MAEs of models on CN15k_ASY, NL27k_ASY and PPI5k_ASY
Fig.11  The NDCGs (Linear and Exp.) of MUKGE and UKGE as training proceeds on CN15K_ASY, NL27k_ASY and PPI5k_ASY. (a)?(c) are the NDCGs(Linear) of models on CN15k_ASY, NL27k_ASY and PPI5k_ASY; (d)?(f) are the NDCGs(Exp.) of models on CN15k_ASY, NL27k_ASY and PPI5k_ASY
Fig.12  F-1 scores (%) and Accus. (%) of MUKGE and UKGE in relation fact classification on CN15k_ASY, NL27k_ASY and PPI5k_ASY. (a) is the F-1 scores of models on CN15k_ASY, NL27k_ASY and PPI5k_ASY; (b) is the Accus. of models on CN15k_ASY, NL27k_ASY and PPI5k_ASY
  
  
  
  
1 K, Bollacker C, Evans P, Paritosh T, Sturge J Taylor . Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of 2008 ACM SIGMOD International Conference on Management of Data. 2008, 1247–1250
2 T, Mitchell W, Cohen E, Hruschka P, Talukdar B S, Yang J, Betteridge A, Carlson B, Dalvi M, Gardner B, Kisiel J, Krishnamurthy N, Lao K, Mazaitis T, Mohamed N, Nakashole E, Platanios A, Ritter M, Samadi B, Settles R, Wang D, Wijaya A, Gupta X, Chen A, Saparov M, Greaves J. Welling . Never-ending learning. Communications of the ACM, 2018, 61( 5): 103–115
3 J, Lehmann R, Isele M, Jakob A, Jentzsch D, Kontokostas P N, Mendes S, Hellmann M, Morsey Kleef P, Van S, Auer C Bizer . Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 2015, 6( 2): 167–195
4 D Wang . Answering contextual questions based on ontologies and question templates. Frontiers of Computer Science in China, 2011, 5( 4): 405–418
5 Z, Zhong X, Lin L He . Answering range-based reverse kNN and why-not reverse kNN queries. Frontiers of Computer Science, 2020, 14( 1): 233–235
6 Z, Zhong X, Lin L, He J Yang . Answering why-not questions on knn queries. Frontiers of Computer Science, 2019, 13( 5): 1062–1071
7 J, Wu X, He X, Wang Q, Wang W, Chen J, Lian X Xie . Graph convolution machine for context-aware recommender system. Frontiers of Computer Science, 2022, 16( 6): 166614
8 Z, Zhang C, Li Z, Wu A, Sun D, Ye X. Luo . NEXT: a neural network framework for next poi recommendation. Frontiers of Computer Science, 2020, 14( 2): 314–333
9 Z, Zheng Y, Liu D, Li X Zhang . Distant supervised relation extraction based on residual attention. Frontiers of Computer Science, 2022, 16( 6): 166336
10 Y, Cao D, Chen Z, Xu H, Li P Luo . Nested relation extraction with iterative neural network. Frontiers of Computer Science, 2021, 15( 3): 153323
11 T, Xie B, Wu B, Jia B Wang . Graph-ranking collective Chinese entity linking algorithm. Frontiers of Computer Science, 2020, 14( 2): 291–303
12 Y, Hu D, Shen T, Nie Y, Kou G Yu . Biomedical entity linking based on less labeled data. Frontiers of Computer Science, 2022, 16( 3): 163343
13 M, Li Y, Xing F, Kong G Zhou . Towards better entity linking. Frontiers of Computer Science, 2022, 16( 2): 162308
14 K, Zeng C, Li L, Hou J, Li L Feng . A comprehensive survey of entity alignment for knowledge graphs. AI Open, 2021, 2: 1–13
15 Y, Lin X, Han R, Xie Z, Liu M Sun . Knowledge representation learning: a quantitative review. 2018, arXiv preprint arXiv: 1812.10901v1
16 T, Rebele F, Suchanek J, Hoffart J, Biega E, Kuzey G Weikum . Yago: a multilingual knowledge base from wikipedia, wordnet, and geonames. In: Proceedings of the 15th International Semantic Web Conference. 2016, 177–185
17 D, Chang M, Chen C, Liu L, Liu D, Li W, Li F, Kong B, Liu X, Luo J, Qi Q, Jin B Xu . DiaKG: An annotated diabetes dataset for medical knowledge graph construction. In: Proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing. 2021, 308–314
18 R, Speer J, Chin C Havasi . ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017, 4444–4451
19 W, Wu H, Li H, Wang K Q Zhu . Probase: a probabilistic taxonomy for text understanding. In: Proceedings of 2012 ACM SIGMOD International Conference on Management of Data. 2012, 481–492
20 M, Chiachío J, Chiachío D, Prescott J Andrews . A new paradigm for uncertain knowledge representation by plausible petri nets. Information Sciences, 2018, 453: 323–345
21 A, Holzinger G, Langs H, Denk K, Zatloukal H Müller . Causability and explainability of artificial intelligence in medicine. WIREs Data Mining and Knowledge Discovery, 2019, 9( 4): e1312
22 A Raskolnikov . Probabilistic compliance. Yale Journal on Regulation, 2017, 34(2): 492−493
23 S, Yang W, Zhang R, Tang M, Zhang Z Huang . Approximate inferring with confidence predicting based on uncertain knowledge graph embedding. Information Sciences, 2022, 609: 679–690
24 X, Chen M, Boratko M, Chen S S, Dasgupta X L, Li A McCallum . Probabilistic box embeddings for uncertain knowledge graph reasoning. In: Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021
25 D, Dubois H Prade . Upper and lower possibilities induced by a multivalued mapping. IFAC Proceedings Volumes, 1983, 16( 13): 147–152
26 G A Shafer . A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press, 1976
27 Z Pawlak . Rough sets. International Journal of Computer & Information Sciences, 1982, 11( 5): 341–356
28 T H, Xu G Y Wang . Finding strongly connected components of simple digraphs based on generalized rough sets theory. Knowledge-Based Systems, 2018, 149: 88–98
29 Z, Zhang X Yang . Tolerance-based multigranulation rough sets in incomplete systems. Frontiers of Computer Science, 2014, 8( 5): 753–762
30 E H, Shortliffe B G Buchanan . A model of inexact reasoning in medicine. Mathematical Biosciences, 1975, 23( 3−4): 351–379
31 L A Zadeh . Fuzzy sets. Information and Control, 1965, 8( 3): 338–353
32 J, Yang G Y, Wang Q H, Zhang Y H, Chen T H Xu . Optimal granularity selection based on cost-sensitive sequential three-way decisions with rough fuzzy sets. Knowledge-Based Systems, 2019, 163: 131–144
33 Q H, Zhang D Y, Xia K X, Liu G Y Wang . A general model of decision-theoretic three-way approximations of fuzzy sets based on a heuristic algorithm. Information Sciences, 2020, 507: 522–539
34 Q H, Zhang Y H, Chen J, Yang G Y Wang . Fuzzy entropy: A more comprehensible perspective for interval shadowed sets of fuzzy sets. IEEE Transactions on Fuzzy Systems, 2020, 28( 11): 3008–3022
35 R, Duda J, Gaschnig P Hart . Model design in the PROSPECTOR consultant system for mineral exploration. In: Webber B L, Nilsson N J, eds. Readings in Artificial Intelligence. San Mateo, CA: Elsevier, 1981
36 F, Chen Y, Wang B, Wang C C J Kuo . Graph representation learning: a survey. 2019, arXiv preprint arXiv: 1909.00958
37 S, Ji S, Pan E, Cambria P, Marttinen P S Yu . A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33( 2): 494–514
38 Q, Wang Z D, Mao B, Wang L Guo . Knowledge graph embedding: a survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29( 12): 2724–2743
39 J H, Yan C Y, Wang W L, Cheng M, Gao A Y Zhou . A retrospective of knowledge graphs. Frontiers of Computer Science, 2018, 12( 1): 55–74
40 R F, Doh C H, Zhou J K, Arthur I, Tawiah B Doh . A systematic review of deep knowledge graph-based recommender systems, with focus on explainable embeddings. Data, 2022, 7( 7): 94
41 H, Zhang T, Zheng J, Gao C, Miao L, Su Y, Li K Ren . Data poisoning attack against knowledge graph embedding. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019
42 A, Bordes N, Usunier A, Garcia-Durán J, Weston O Yakhnenko . Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013, 2787−2795
43 Z, Wang J, Zhang J, Feng Z Chen . Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014, 1112−1119
44 G, Ji S, He L, Xu K, Liu J Zhao . Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015, 687−696
45 Y, Lin Z, Liu M, Sun Y, Liu X Zhu . Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015, 2181−2187
46 M, Nickel V, Tresp H P Kriegel . A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning. 2011, 809−816
47 B, Yang W T, Yih X, He J, Gao L Deng . Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the 3rd International Conference on Learning Representations. 2015, 1−12
48 M, Nickel L, Rosasco T Poggio . Holographic embeddings of knowledge graphs. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 1955−1961
49 T, Trouillon J, Welbl S, Riedel É, Gaussier G Bouchard . Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning. 2016, 2071−2080
50 Z, Sun Z, Deng J, Nie J Tang . Rotate: knowledge graph embedding by relational rotation in complex space. In: Proceedings of International Conference on Learning Representations. 2019
51 T, Song J, Luo L Huang . Rot-pro: modeling transitivity by projection in knowledge graph embedding. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 24695–24706
52 L, Chao J, He T, Wang W Chu . PairRE: knowledge graph embeddings via paired relation vectors. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021
53 Z, Li H, Liu Z, Zhang T, Liu N. Xiong . Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33( 8): 3961–3973
54 Z, Zhang Z, Li H, Liu N Xiong . Multi-scale dynamic convolutional network for knowledge graph embedding. IEEE Transactions on Knowledge and Data Engineering, 2022, 34( 8): 2335–2347
55 Z, Chen M Y, Yeh T Kuo . PASSLEAF: a pool-based semi-supervised learning framework for uncertain knowledge graph embedding. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021, 4019−4026
56 X, Chen M, Boratko M, Chen S S, Dasgupta X L, Li A McCallum . Probabilistic box embeddings for uncertain knowledge graph reasoning. In: Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021
57 S, Yang W, Zhang R Tang . Fast confidence prediction of uncertainty based on knowledge graph embedding. In: Proceedings of the 3rd International Conference on Algorithms, Computing and Artificial Intelligence. 2020, 54
58 F, Liu Y, Shen T, Zhang H Gao . Entity-related paths modeling for knowledge base completion. Frontiers of Computer Science, 2020, 14( 5): 145311
59 A, Hommersom P J F Lucas . An introduction to knowledge representation and reasoning in healthcare. In: Hommersom A, Lucas P J F, eds. Foundations of Biomedical Knowledge Representation. Cham: Springer, 2015, 9−32
60 J, Zhang T, Wu G Qi . Gaussian metric learning for few-shot uncertain knowledge graph completion. In: Proceedings of the 26th International Conference on Database Systems for Advanced Applications. 2021, 256−271
61 X, Chen M, Chen W, Shi Y, Sun C Zaniolo . Embedding uncertain knowledge graphs. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence and the 31st Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. 2019, 413
62 L A, Galárraga C, Teflioudi K, Hose F Suchanek . Amie: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 413−422
63 A, Kimmig S H, Bach M, Broecheler B, Huang L Getoor . A short introduction to probabilistic soft logic. In: Proceedings of the 26th Neural Information Processing Systems. 2012, 1−4
64 Halaby M, El A Abdalla . New phase transitions for formulas in Łukasiewicz logic. Frontiers of Computer Science, 2020, 14( 6): 146403
65 Z, Zhang J, Cai Y, Zhang J Wang . Learning hierarchy-aware knowledge graph embeddings for link prediction. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 3065−3072
66 H, Liu Y, Wu Y Yang . Analogical inference for multi-relational embeddings. In: Proceedings of the 34th International Conference on Machine Learning. 2017, 2168−2178
67 W, Xu S, Zheng L, He B, Shao J, Yin T Liu . SEEK: segmented embedding of knowledge graphs. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020
68 S M, Kazemi D Poole . Simple embedding for link prediction in knowledge graphs. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018
69 M, Fan Q, Zhou T F Zheng . Learning embedding representations for knowledge inference on imperfect and incomplete repositories. In: Proceedings of 2016 IEEE/WIC/ACM International Conference on Web Intelligence. 2016, 42−48
70 N, Kertkeidkachorn X, Liu R Ichise . GTransE: generalizing translation-based model on uncertain knowledge graph embedding. In: Proceedings of the 33rd Annual Conference of the Japanese Society for Artificial Intelligence. 2019, 170−178
71 J, Hu R, Cheng Z, Huang Y, Fang S Luo . On embedding uncertain graphs. In: Proceedings of the 26th ACM on Conference on Information and Knowledge Management. 2017, 157−166
72 YanLi, Zhu XiaoPing, Yang Liang, Wang ZhiYu Zang . TransRD: embedding of knowledge graph with asymmetric features (in Chinese). Journal of Chinese Information Processing, 2019, 33(11): 73−82
73 S, Jia Y, Xiang X, Chen K, Wang J Shi . Triple trustworthiness measurement for knowledge graph. In: Proceedings of 2019 World Wide Web Conference. 2019, 2865−2871
74 A, Broder R, Kumar F, Maghoul P, Raghavan S, Rajagopalan R, Stata A, Tomkins J Wiener . Graph structure in the web. Computer Networks, 2000, 33(1−6): 309−320
75 L, Page S, Brin R, Motwani T Winograd . The pagerank citation ranking: bringing order to the Web. Stanford InfoLab. 1999
76 H, Wu Y, Pei J Yu . Detecting academic experts by topic-sensitive link analysis. Frontiers of Computer Science in China, 2009, 3( 4): 445–456
77 I, Balazevic C, Allen T M Hospedales . Tucker: Tensor factorization for knowledge graph completion. In: Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019
78 Y, Zou D Qiu . Combining tensor decomposition and word embedding for asymmetrical relationship prediction in knowledge graphs. In: Proceedings of the 13th International Symposium on Computational Intelligence and Design. 2020
79 M, Chen K Q, Weinberger Z, Xu F Sha . Marginalizing stacked linear denoising autoencoders. The Journal of Machine Learning Research, 2015, 16( 1): 3849–3875
80 D, Szklarczyk J H, Morris H, Cook M, Kuhn S, Wyder M, Simonovic A, Santos N T, Doncheva A, Roth P, Bork L J, Jensen Mering C Von . The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 2017, 45( D1): D362–D368
[1] FCS-22427-OF-QL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed