Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (1) : 181708    https://doi.org/10.1007/s11704-023-3394-0
Image and Graphics
Visibility restoration for real-world hazy images via improved physical model and Gaussian total variation
Chuan LI1,2, Enping HU3, Xinyu ZHANG3, Hao ZHOU1, Hailing XIONG4, Yun LIU3()
1. College of Computer and Information Science, Southwest University, Chongqing 400715, China
2. School of Big Data and Intelligent Engineering, Chongqing College of International Business and Economics, Chongqing 401520, China
3. College of Artificial Intelligence, Southwest University, Chongqing 400715, China
4. College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
 Download: PDF(4051 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Yun LIU   
Just Accepted Date: 04 December 2023   Issue Date: 18 January 2024
 Cite this article:   
Chuan LI,Enping HU,Xinyu ZHANG, et al. Visibility restoration for real-world hazy images via improved physical model and Gaussian total variation[J]. Front. Comput. Sci., 2024, 18(1): 181708.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-023-3394-0
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I1/181708
Fig.1  Flowchart of the proposed approach
Fig.2  Visibility restoration results by different methods. (a) Hazy images; (b) CAP; (c) BCPDCP; (d) DehazeNet; (e) MSCNN; (f) PDN; (g) PMD-Net; (h) ours
Methods CAP BCPDCP DehazeNet MSCNN PDN PMD-Net Our
NIQE 3.9024 3.8587 4.1075 3.9281 3.7790 4.6733 3.7512
FADE 1.3131 0.6876 0.8096 0.9375 0.6908 1.1059 0.7674
R 1.2924 1.6574 1.4014 1.5191 1.7824 1.3622 2.9249
Tab.1  Quantitative comparisons of 100 real-world images
Fig.3  Effects of three weight parameters (α, β, δ)
Fig.4  Comparisons of noise suppression. (a) Hazy image; (b) noisy hazy image; (c) CAP; (d) BCPDCP; (e) DehazeNet; (f) MSCNN; (g) PDN; (h) PMD-Net; (i) ours; (j) noise map
Fig.5  Average convergence curve of 100 real-world images
Fig.6  Extended applications on low-light and sandstorm degraded images
1 Q, Zhu J, Mai L Shao . A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 2015, 24( 11): 3522–3533
2 C, Li C, Yuan H, Pan Y, Yang Z, Wang H, Zhou H Xiong . Single image dehazing based on improved bright channel prior and dark channel prior. Electronics, 2023, 12( 2): 299
3 W, Ren S, Liu H, Zhang J, Pan X, Cao M H Yang . Single image dehazing via multi-scale convolutional neural networks. In: Proceedings of the 14th European Conference on Computer Vision. 2016, 154−169
4 B, Cai X, Xu K, Jia C, Qing D Tao . DehazeNet: an end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 2016, 25( 11): 5187–5198
5 D, Yang J Sun . Proximal Dehaze-Net: a prior learning-based deep network for single image dehazing. In: Proceedings of the 15th European Conference on Computer Vision. 2018, 729−746
6 Ye T, Zhang Y, Jiang M, Chen L, Liu Y, Chen S, Chen E. Perceiving and modeling density for image dehazing. In: Proceedings of the 17th European Conference on Computer Vision. 2022, 130−145
7 S, Hao X, Han Y, Guo X, Xu M Wang . Low-light image enhancement with semi-decoupled decomposition. IEEE Transactions on Multimedia, 2020, 22( 12): 3025–3038
8 L K, Choi J, You A C Bovik . Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Transactions on Image Processing, 2015, 24( 11): 3888–3901
9 N, Hautière J P, Tarel D, Aubert E Dumont . Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology, 2008, 27( 2): 87–95
10 A, Mittal R, Soundararajan A C Bovik . Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 2013, 20( 3): 209–212
[1] FCS-23394-OF-CL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed