Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (3) : 183909    https://doi.org/10.1007/s11704-024-31014-9
Interdisciplinary
SCREEN: predicting single-cell gene expression perturbation responses via optimal transport
Haixin WANG1, Yunhan WANG2, Qun JIANG3, Yan ZHANG1(), Shengquan CHEN4()
1. Cadre Medical Department, The 1st Clinical Center, Chinese PLA General Hospital, Beijing 100853, China
2. School of Statistics, Renmin University of China, Beijing 100872, China
3. Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
4. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
 Download: PDF(3748 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Yan ZHANG,Shengquan CHEN   
Issue Date: 18 March 2024
 Cite this article:   
Haixin WANG,Yunhan WANG,Qun JIANG, et al. SCREEN: predicting single-cell gene expression perturbation responses via optimal transport[J]. Front. Comput. Sci., 2024, 18(3): 183909.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-31014-9
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I3/183909
Fig.1  The architecture of SCREEN and experiment results. (a) The graphical illustration of SCREEN model; (b) performance of different methods on various datasets evaluated by maximum mean discrepancy (MMD) and Wasserstein distance; (c) performance of different methods on various datasets evaluated by the number of common genes between the two sets of differentially expressed genes (DEGs) derived from true and predicted responses, respectively; (d) gene ontology enrichment results of the DEGs between unperturbed and real perturbed dendritic cells (left) and the DEGs between unperturbed and SCREEN-predicted perturbed dendritic cells (right); (e) robustness of different methods to data noise/sparsity; (f) robustness of different methods to number of cell types; (g) robustness of different methods to cell type imbalance
1 M, Lotfollahi F A, Wolf F J Theis . scGen predicts single-cell perturbation responses. Nature Methods, 2019, 16( 8): 715–721
2 Y, Ji M, Lotfollahi F A, Wolf F J Theis . Machine learning for perturbational single-cell omics. Cell Systems, 2021, 12( 6): 522–537
3 X, Wei J, Dong F Wang . scPreGAN, a deep generative model for predicting the response of single-cell expression to perturbation. Bioinformatics, 2022, 38( 13): 3377–3384
4 K, He X, Chen S, Xie Y, Li P, Dollár R Girshick . Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15979–15988
5 A V, Makkuva A, Taghvaei J D, Lee S Oh . Optimal transport mapping via input convex neural networks. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 619
6 H M, Kang M, Subramaniam S, Targ M, Nguyen L, Maliskova E, McCarthy E, Wan S, Wong L, Byrnes C M, Lanata R E, Gate S, Mostafavi A, Marson N, Zaitlen L A, Criswell C J Ye . Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 2018, 36( 1): 89–94
7 A L, Haber M, Biton N, Rogel R H, Herbst K, Shekhar C, Smillie G, Burgin T M, Delorey M R, Howitt Y, Katz I, Tirosh S, Beyaz D, Dionne M, Zhang R, Raychowdhury W S, Garrett O, Rozenblatt-Rosen H N, Shi O, Yilmaz R J, Xavier A Regev . A single-cell survey of the small intestinal epithelium. Nature, 2017, 551( 7680): 333–339
8 T D, Green S, Peidli C, Shen T, Gross J, Min S, Garda J P, Taylor-King D S, Marks A, Luna N, Blüthgen C Sander . scPerturb: information resource for harmonized single-cell perturbation data. In: Proceedings of the 6th Conference on Neural Information Processing Systems. 2022
9 S, Chen R, Wang W, Long R Jiang . ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data. Bioinformatics, 2023, 39( 1): btac842
10 J, Wang H, Tao H, Li X, Bo H Chen . 3D genomic organization in cancers. Quantitative Biology, 2023, 11( 2): 109–121
11 Z, Gao X, Chen Z, Li X, Cui Q, Jiang K, Li S, Chen R Jiang . scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data. Journal of Genetics and Genomics, 2023, doi: 10.1016/j.jgg.2023.09.011
12 S, Chen K, Hua H, Cui R Jiang . VPAC: variational projection for accurate clustering of single-cell transcriptomic data. BMC Bioinformatics, 2019, 20: 139-151
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed