Adaptive network combination for single-image reflection removal: a domain generalization perspective
Ming LIU1,2, Jianan PAN1, Zifei YAN1, Wangmeng ZUO1(), Lei ZHANG2
. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China . Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China
Fig.1 Illustration of the proposed two adaptive network combination (AdaNEC) methods, i.e., output fusion () and network interpolation ()
Dataset
Acquisition method
Dataset partition
Camera model
Apertures range
Camera/Glass angle
Acquisition environment
Piece of Glass (Thickness)
# of Samples (and )
Alignment of and
SynCEIL
synthetic
train
?
?
front
indoor + outdoor
?
7,643 ()
perfect
Synzhang
synthetic
train
?
?
front + oblique
indoor + outdoor
?
13,700 ()
perfect
Unaligned
real-world
train
a DSLR
?
front + oblique
indoor + outdoor
1 (?)
250
~20 pixels shift
Real89/20
real-world
train/test
Canon EOS 600D
f/1.6 ? f/2
front + oblique
indoor + outdoor
1 (?)
89/20
aligned
Nature200/20
real-world
train/test
Canon EOS 750D
f/4 ? f/16
front + oblique
indoor + outdoor
2 (3/8 mm)
200/20
aligned
SIR2
Wild
real-world
test
Nikon D5300
unconstrained
unconstrained
indoor + outdoor
3 (3/5/10 mm)
55
aligned
Postcard
f/11 ? f/32
controlled
indoor
199
Solid
200
Tab.1 Comparison between the collection configuration of commonly used reflection removal datasets
Fig.2 Structure of reflection type-aware weighting (RTAW) module. and are vectors extracted by and . means expertise level of the th expert on image , which can be used to calculate the weights
Method
Real20 (20)
Wild (55)
Postcard (199)
Solid (200)
Nature20 (20)
Average (474/494)
PSNR↑
SSIM↑
PSNR↑
SSIM↑
PSNR↑
SSIM↑
PSNR↑
SSIM↑
PSNR↑
SSIM↑
PSNR↑
SSIM↑
ERRNet [5]
22.07
0.781
25.13
0.889
22.76
0.864
24.62
0.898
20.86
0.757
23.79
0.877
w/o
22.70
0.791
24.60
0.865
23.15
0.871
24.91
0.895
20.46
0.756
24.04
0.877
22.80
0.790
25.26
0.890
23.08
0.874
25.26
0.904
20.99
0.768
24.24
0.885
w/o
22.37
0.787
24.63
0.865
23.14
0.874
24.75
0.894
20.53
0.757
23.96
0.878
22.81
0.791
25.69
0.895
23.56
0.884
25.13
0.902
21.20
0.771
24.44
0.889
IBCLN [4]
21.86
0.762
24.71
0.886
23.39
0.875
24.87
0.893
23.57
0.783
24.08
0.875
w/o
22.53
0.794
25.44
0.888
24.19
0.888
25.05
0.899
24.59
0.818
24.63
0.886
22.52
0.789
25.77
0.897
24.27
0.889
25.24
0.900
24.74
0.820
24.78
0.888
w/o
22.41
0.793
25.20
0.887
23.52
0.887
24.77
0.897
24.56
0.816
24.21
0.885
22.04
0.782
25.35
0.894
23.34
0.887
24.85
0.897
24.59
0.818
24.17
0.885
RAGNet [7]
22.95
0.793
25.52
0.880
23.67
0.879
26.15
0.903
21.21
0.765
24.90
0.886
w/o
23.32
0.806
25.87
0.895
25.08
0.900
26.19
0.907
21.40
0.775
25.57
0.898
23.34
0.807
25.85
0.896
25.20
0.903
26.17
0.908
21.48
0.776
25.60
0.900
w/o
23.43
0.810
25.52
0.887
23.91
0.884
26.26
0.906
21.31
0.770
25.07
0.891
23.18
0.802
26.25
0.899
24.90
0.906
25.66
0.903
21.44
0.777
25.31
0.900
Dong et al. [10]
23.34
0.812
25.73
0.902
23.72
0.903
24.36
0.898
23.45
0.808
24.21
0.897
YTMT [11]
23.26
0.806
25.48
0.890
22.91
0.884
24.87
0.896
20.94
0.778
24.05
0.886
DSRNet [12]
24.23
0.820
25.68
0.896
24.56
0.908
26.28
0.914
?
?
25.40
0.905
Tab.2 Quantitative comparison against the state-of-the-art backbones. Note that the models marked by gray (i.e., ERRNet and RAGNet based models, YTMT) are not trained on Nature dataset. The results of DSRNet on Nature20 is not given since the model trained without Nature20 is not released
Fig.3 Visual comparison of ERRNet based AdaNEC methods
1
R E Parkin . A note on the extinction coefficient and absorptivity of glass. Solar Energy, 2015, 114: 196–197
2
Q, Zheng B, Shi J, Chen X, Jiang L Y, Duan A C Kot . Single image reflection removal with absorption effect. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 13395−13404
3
X, Zhang R, Ng Q Chen . Single image reflection separation with perceptual losses. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, 4786−4794
4
C, Li Y, Yang K, He S, Lin J E Hopcroft . Single image reflection removal through cascaded refinement. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 3562−3571
5
K, Wei J, Yang Y, Fu D, Wipf H Huang . Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 8170−8179
6
R, Wan B, Shi L Y, Duan A H, Tan A C Kot . Benchmarking single-image reflection removal algorithms. In: Proceedings of 2017 IEEE International Conference on Computer Vision. 2017, 3942−3950
7
Y, Li M, Liu Y, Yi Q, Li D, Ren W Zuo . Two-stage single image reflection removal with reflection-aware guidance. Applied Intelligence, 2023, 53( 16): 19433–19448
8
I J Good . Rational decisions. Journal of the Royal Statistical Society: Series B (Methodological), 1952, 14( 1): 107–114
9
S, Mannor D, Peleg R Rubinstein . The cross entropy method for classification. In: Proceedings of the 22nd International Conference on Machine Learning. 2005, 561−568
10
Z, Dong K, Xu Y, Yang H, Bao W, Xu R W H Lau . Location-aware single image reflection removal. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 4997−5006
11
Q, Hu X Guo . Trash or treasure? An interactive dual-stream strategy for single image reflection separation. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 1890
12
Q, Hu X Guo . Single image reflection separation via component synergy. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 13092−13101