Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2025, Vol. 19 Issue (1) : 191703    https://doi.org/10.1007/s11704-024-3582-6
Image and Graphics
Adaptive network combination for single-image reflection removal: a domain generalization perspective
Ming LIU1,2, Jianan PAN1, Zifei YAN1, Wangmeng ZUO1(), Lei ZHANG2
. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
. Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China
 Download: PDF(1253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Wangmeng ZUO   
Just Accepted Date: 05 July 2024   Issue Date: 30 August 2024
 Cite this article:   
Ming LIU,Jianan PAN,Zifei YAN, et al. Adaptive network combination for single-image reflection removal: a domain generalization perspective[J]. Front. Comput. Sci., 2025, 19(1): 191703.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-3582-6
https://academic.hep.com.cn/fcs/EN/Y2025/V19/I1/191703
Fig.1  Illustration of the proposed two adaptive network combination (AdaNEC) methods, i.e., output fusion (OF) and network interpolation (NI)
Dataset Acquisition method Dataset partition Camera model Apertures range Camera/Glass angle Acquisition environment Piece of Glass (Thickness) # of Samples T (and I) Alignment of I and T
SynCEIL synthetic train ? ? front indoor + outdoor ? 7,643 () perfect
Synzhang synthetic train ? ? front + oblique indoor + outdoor ? 13,700 () perfect
Unaligned real-world train a DSLR ? front + oblique indoor + outdoor 1 (?) 250 ~20 pixels shift
Real89/20 real-world train/test Canon EOS 600D f/1.6 ? f/2 front + oblique indoor + outdoor 1 (?) 89/20 aligned
Nature200/20 real-world train/test Canon EOS 750D f/4 ? f/16 front + oblique indoor + outdoor 2 (3/8 mm) 200/20 aligned
SIR2 Wild real-world test Nikon D5300 unconstrained unconstrained indoor + outdoor 3 (3/5/10 mm) 55 aligned
Postcard f/11 ? f/32 controlled indoor 199
Solid 200
Tab.1  Comparison between the collection configuration of commonly used reflection removal datasets
Fig.2  Structure of reflection type-aware weighting (RTAW) module. ki and q are vectors extracted by Fi and F. vi means expertise level of the ith expert Gi on image I, which can be used to calculate the weights
Method Real20 (20) Wild (55) Postcard (199) Solid (200) Nature20 (20) Average (474/494)
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
ERRNet [5] 22.07 0.781 25.13 0.889 22.76 0.864 24.62 0.898 20.86 0.757 23.79 0.877
ERRNetOF w/o wˉi 22.70 0.791 24.60 0.865 23.15 0.871 24.91 0.895 20.46 0.756 24.04 0.877
ERRNetOF 22.80 0.790 25.26 0.890 23.08 0.874 25.26 0.904 20.99 0.768 24.24 0.885
ERRNetNI w/o wˉi 22.37 0.787 24.63 0.865 23.14 0.874 24.75 0.894 20.53 0.757 23.96 0.878
ERRNetNI 22.81 0.791 25.69 0.895 23.56 0.884 25.13 0.902 21.20 0.771 24.44 0.889
IBCLN [4] 21.86 0.762 24.71 0.886 23.39 0.875 24.87 0.893 23.57 0.783 24.08 0.875
IBCLNOF w/o wˉi 22.53 0.794 25.44 0.888 24.19 0.888 25.05 0.899 24.59 0.818 24.63 0.886
IBCLNOF 22.52 0.789 25.77 0.897 24.27 0.889 25.24 0.900 24.74 0.820 24.78 0.888
IBLCNNI w/o wˉi 22.41 0.793 25.20 0.887 23.52 0.887 24.77 0.897 24.56 0.816 24.21 0.885
IBCLNNI 22.04 0.782 25.35 0.894 23.34 0.887 24.85 0.897 24.59 0.818 24.17 0.885
RAGNet [7] 22.95 0.793 25.52 0.880 23.67 0.879 26.15 0.903 21.21 0.765 24.90 0.886
RAGNetOF w/o wˉi 23.32 0.806 25.87 0.895 25.08 0.900 26.19 0.907 21.40 0.775 25.57 0.898
RAGNetOF 23.34 0.807 25.85 0.896 25.20 0.903 26.17 0.908 21.48 0.776 25.60 0.900
RAGNetNI w/o wˉi 23.43 0.810 25.52 0.887 23.91 0.884 26.26 0.906 21.31 0.770 25.07 0.891
RAGNetNI 23.18 0.802 26.25 0.899 24.90 0.906 25.66 0.903 21.44 0.777 25.31 0.900
Dong et al. [10] 23.34 0.812 25.73 0.902 23.72 0.903 24.36 0.898 23.45 0.808 24.21 0.897
YTMT [11] 23.26 0.806 25.48 0.890 22.91 0.884 24.87 0.896 20.94 0.778 24.05 0.886
DSRNet [12] 24.23 0.820 25.68 0.896 24.56 0.908 26.28 0.914 ? ? 25.40 0.905
Tab.2  Quantitative comparison against the state-of-the-art backbones. Note that the models marked by gray (i.e., ERRNet and RAGNet based models, YTMT) are not trained on Nature dataset. The results of DSRNet on Nature20 is not given since the model trained without Nature20 is not released
Fig.3  Visual comparison of ERRNet based AdaNEC methods
1 R E Parkin . A note on the extinction coefficient and absorptivity of glass. Solar Energy, 2015, 114: 196–197
2 Q, Zheng B, Shi J, Chen X, Jiang L Y, Duan A C Kot . Single image reflection removal with absorption effect. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 13395−13404
3 X, Zhang R, Ng Q Chen . Single image reflection separation with perceptual losses. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, 4786−4794
4 C, Li Y, Yang K, He S, Lin J E Hopcroft . Single image reflection removal through cascaded refinement. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 3562−3571
5 K, Wei J, Yang Y, Fu D, Wipf H Huang . Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 8170−8179
6 R, Wan B, Shi L Y, Duan A H, Tan A C Kot . Benchmarking single-image reflection removal algorithms. In: Proceedings of 2017 IEEE International Conference on Computer Vision. 2017, 3942−3950
7 Y, Li M, Liu Y, Yi Q, Li D, Ren W Zuo . Two-stage single image reflection removal with reflection-aware guidance. Applied Intelligence, 2023, 53( 16): 19433–19448
8 I J Good . Rational decisions. Journal of the Royal Statistical Society: Series B (Methodological), 1952, 14( 1): 107–114
9 S, Mannor D, Peleg R Rubinstein . The cross entropy method for classification. In: Proceedings of the 22nd International Conference on Machine Learning. 2005, 561−568
10 Z, Dong K, Xu Y, Yang H, Bao W, Xu R W H Lau . Location-aware single image reflection removal. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 4997−5006
11 Q, Hu X Guo . Trash or treasure? An interactive dual-stream strategy for single image reflection separation. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 1890
12 Q, Hu X Guo . Single image reflection separation via component synergy. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 13092−13101
[1] FCS-23582-OF-ML_suppl_1 Download
[2] FCS-23582-OF-ML_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed