Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (5) : 185347    https://doi.org/10.1007/s11704-024-40013-9
Artificial Intelligence
A glance at in-context learning
Yongliang WU, Xu YANG()
School of Computer Science & Engineering, Key Lab of New Generation Artificial Intelligence Technology & Its Interdisciplinary Applications (Ministry of Education), Southeast University, Nanjing 211189, China
 Download: PDF(738 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Xu YANG   
Just Accepted Date: 19 April 2024   Issue Date: 24 May 2024
 Cite this article:   
Yongliang WU,Xu YANG. A glance at in-context learning[J]. Front. Comput. Sci., 2024, 18(5): 185347.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-40013-9
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I5/185347
Fig.1  The architecture of the Von Neumann model and the current task-agnostic unified task-solving framework of LLMs
1 A, Radford J W, Kim C, Hallacy A, Ramesh G, Goh S, Agarwal G, Sastry A, Askell P, Mishkin J, Clark G, Krueger I Sutskever . Learning transferable visual models from natural language supervision. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 8748−8763
2 K, Sun X, Luo M Y Luo . A survey of pretrained language models. In: Proceedings of International Conference on Knowledge Science, Engineering and Management. 2022, 442−456
3 T B, Brown B, Mann N, Ryder M, Subbiah J D, Kaplan P, Dhariwal A, Neelakantan P, Shyam G, Sastry A, Askell S, Agarwal A, Herbert-Voss G, Krueger T, Henighan R, Child A, Ramesh D M, Ziegler J, Wu C, Winter C, Hesse M, Chen E, Sigler M, Litwin S, Gray B, Chess J, Clark C, Berner S, McCandlish A, Radford I, Sutskever D Amodei . Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 159
4 D R, Hofstadter E Sander . Surfaces and Essences: Analogy as the Fuel and Fire of Thinking. New York: Basic Books, 2013
5 M, Wen R, Lin H, Wang Y, Yang Y, Wen L, Mai J, Wang H, Zhang W Zhang . Large sequence models for sequential decision-making: a survey. Frontiers of Computer Science, 2023, 17( 6): 176349
6 S M, Xie A, Raghunathan P, Liang T Ma . An explanation of in-context learning as implicit Bayesian inference. In: Proceedings of the 10th International Conference on Learning Representations. 2021
7 X, Yang Y, Wu M, Yang H, Chen X Geng . Exploring diverse in-context configurations for image captioning. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2024
8 L, Wang L, Li D, Dai D, Chen H, Zhou F, Meng J, Zhou X Sun . Label words are anchors: An information flow perspective for understanding in-context learning. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 9840−9855
9 J, Achiam S, Adler S, Agarwal L, Ahmad I, Akkaya F L, Aleman D, Almeida J, Altenschmidt S, Altman S, Anadkat others. Gpt-4 Technical Report. 2023, arXiv preprint arXiv:2303.08774
10 L, Li J, Peng H, Chen C, Gao X Yang . How to configure good in-context sequence for visual question answering. 2023, arXiv preprint arXiv: 2312.01571
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed