Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2025, Vol. 19 Issue (5) : 195337    https://doi.org/10.1007/s11704-024-40317-w
Artificial Intelligence
Optimizing low-rank adaptation with decomposed matrices and adaptive rank allocation
Dacao ZHANG1, Fan YANG1, Kun ZHANG1(), Xin LI2, Si WEI2, Richang HONG1, Meng WANG1
1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China
2. Artificial Intelligence Research Institute, iFLYTEK Company Ltd., Hefei 230088, China
 Download: PDF(382 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Kun ZHANG   
Just Accepted Date: 11 September 2024   Issue Date: 15 October 2024
 Cite this article:   
Dacao ZHANG,Fan YANG,Kun ZHANG, et al. Optimizing low-rank adaptation with decomposed matrices and adaptive rank allocation[J]. Front. Comput. Sci., 2025, 19(5): 195337.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-40317-w
https://academic.hep.com.cn/fcs/EN/Y2025/V19/I5/195337
Fig.1  The overall diagram of our proposed method. (a) The structure of matrix decomposition method; (b) the diagram of the task-specific rank allocation method
Model & method Params/per task MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG
Single-task training
RoBlarge(LoRAr=8) 3M 89.71 95.87 90.67 66.52 94.67 91.28 84.48 91.62 88.10
RoBlarge(Ours) 3.01M 90.36 95.99 90.93 70.02 94.53 91.30 85.56 92.32 88.87
Multi-task training
RoBbase(LoRAr=8) 0.24M 84.39 93.46 88.48 63.16 90.68 87.12 75.81 ? 83.30
RoBbase(LoRAr=16) 0.48M 84.79 94.50 88.97 60.32 91.12 88.12 75.81 ? 83.38
RoBbase(Ours) 0.48M 85.40 93.92 88.73 64.18 91.27 88.33 76.17 ? 84.00
Tab.1  The results of our methods on GLUE tasks
MethodSST-2MRPCCoLAQNLISTS-BAVG
DyLoRA94.2689.4659.5192.2291.0685.30
AdaLoRA94.4990.1961.6493.0891.1686.11
Ours94.8489.7363.3193.8890.9886.55
Tab.2  The results of our decomposition method compared with DyLoRA [5] and AdaLoRA [4]
Fig.2  Visualization of the last layer task embeddings
1 Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S. GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 2018, 353−355
2 L, Chen L, Wu K, Zhang R, Hong D, Lian Z, Zhang J, Zhou M Wang . Improving recommendation fairness via data augmentation. In: Proceedings of the ACM Web Conference 2023. 2023, 1012−1020
3 Hu E J, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W. LoRA: low-rank adaptation of large language models. In: Proceedings of the 10th International Conference on Learning Representations. 2021, 1−26
4 Zhang Q, Chen M, Bukharin A, He P, Cheng Y, Chen W, Zhao T. Adaptive budget allocation for parameter-efficient fine-tuning. In: Proceedings of the 11th International Conference on Learning Representations. 2023, 1−17
5 M, Valipour M, Rezagholizadeh I, Kobyzev A Ghodsi . DyLoRA: parameter-efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. 2023, 3274−3287
6 Y, Wang Y, Lin X, Zeng G Zhang . MultiLoRA: democratizing LoRA for better multi-task learning. 2023, arXiv preprint arXiv: 2311.11501
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed