|
|
Cascade context-oriented spatio-temporal attention network for efficient and fine-grained video-grounded dialogues |
Hao WANG, Bin GUO( ), Mengqi CHEN, Qiuyun ZHANG, Yasan DING, Ying ZHANG, Zhiwen YU |
School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China |
|
|
Abstract Video-Grounded Dialogue System (VGDS), focusing on generating reasonable responses based on multi-turn dialogue contexts and a given video, has received intensive attention recently. The key to building a superior VGDS lies in efficiently reasoning over visual and textual concepts of various granularities and achieving comprehensive visual-textual multi-modality alignment. Despite remarkable research progress, existing studies suffer from identifying context-relevant video parts while disregarding the impact of redundant information in long-form and content-dynamic videos. Further, current methods usually align all semantics in different modalities uniformly using a one-time cross-attention scheme, which neglects the sophisticated correspondence between various granularities of visual and textual concepts (e.g., still objects with nouns, dynamic events with verbs). To this end, we propose a novel system, namely Cascade cOntext-oriented Spatio-Temporal Attention Network (COSTA), to generate reasonable responses efficiently and accurately. Specifically, COSTA first adopts a cascade attention network to localize only the most relevant video clips and regions in a coarse-to-fine manner which effectively filters the irrelevant visual semantics. Secondly, we design a memory distillation-inspired iterative visual-textual cross-attention strategy to progressively integrate visual semantics with dialogue contexts across varying granularities, facilitating extensive multi-modal alignment. Experiments on several benchmarks demonstrate significant improvements in our model over state-of-the-art methods across various metrics.
|
Keywords
video-grounded dialogue
spatio-temporal attention
multi-modality
|
Corresponding Author(s):
Bin GUO
|
Just Accepted Date: 09 July 2024
Issue Date: 23 September 2024
|
|
1 |
Q, Wu D, Teney P, Wang C, Shen A, Dick Den Hengel A Van . Visual question answering: a survey of methods and datasets. Computer Vision and Image Understanding, 2017, 163: 21–40
|
2 |
Y, Zhong W, Ji J, Xiao Y, Li W, Deng T S Chua . Video question answering: datasets, algorithms and challenges. In: Proceedings of 2022 Conference on Empirical Methods in Natural Language Processing. 2022, 6439−6455
|
3 |
R, Liu Y Han . Instance-sequence reasoning for video question answering. Frontiers of Computer Science, 2022, 16( 6): 166708
|
4 |
A, Das S, Kottur K, Gupta A, Singh D, Yadav J M F, Moura D, Parikh D Batra . Visual dialog. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1080−1089
|
5 |
C, Chen Z, Tan Q, Cheng X, Jiang Q, Liu Y, Zhu X Gu . UTC: A unified transformer with inter-task contrastive learning for visual dialog. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 18082−18091
|
6 |
H, Alamri V, Cartillier A, Das J, Wang A, Cherian I, Essa D, Batra T K, Marks C, Hori P, Anderson S, Lee D Parikh . Audio visual scene-aware dialog. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 7550−7559
|
7 |
C, Hori H, Alamri J, Wang G, Wichern T, Hori A, Cherian T K, Marks V, Cartillier R G, Lopes A, Das I, Essa D, Batra D Parikh . End-to-end audio visual scene-aware dialog using multimodal attention-based video features. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019, 2352−2356
|
8 |
N, Robinson B, Tidd D, Campbell D, Kulić P Corke . Robotic vision for human-robot interaction and collaboration: a survey and systematic review. ACM Transactions on Human-Robot Interaction, 2023, 12( 1): 12
|
9 |
J, Gu E, Stefani Q, Wu J, Thomason X Wang . Vision-and-language navigation: a survey of tasks, methods, and future directions. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022, 7606−7623
|
10 |
S M, Preum S, Munir M, Ma M S, Yasar D J, Stone R, Williams H, Alemzadeh J A Stankovic . A review of cognitive assistants for healthcare: trends, prospects, and future directions. ACM Computing Surveys (CSUR), 2021, 53( 6): 130
|
11 |
J, Carreira A Zisserman . Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 4724−4733
|
12 |
A, Vaswani N, Shazeer N, Parmar J, Uszkoreit L, Jones A N, Gomez Ł, Kaiser I Polosukhin . Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 6000−6010
|
13 |
H, Le D, Sahoo N, Chen S Hoi . Multimodal transformer networks for end-to-end video-grounded dialogue systems. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019, 5612−5623
|
14 |
H, Le N F Chen . Multimodal transformer with pointer network for the DSTC8 AVSD challenge. 2020, arXiv preprint arXiv: 2002.10695
|
15 |
J, Johnson R, Krishna M, Stark L J, Li D A, Shamma M S, Bernstein L Fei-Fei . Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3668−3678
|
16 |
S, Geng P, Gao M, Chatterjee C, Hori Roux J, Le Y, Zhang H, Li A Cherian . Dynamic graph representation learning for video dialog via multi-modal shuffled transformers. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021, 1415−1423
|
17 |
P, Velickovic G, Cucurull A, Casanova A, Romero P, Liò Y Bengio . Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations. 2018
|
18 |
J, Kim S, Yoon D, Kim C D Yoo . Structured co-reference graph attention for video-grounded dialogue. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021, 1789−1797
|
19 |
H, Le N F, Chen S C H Hoi . Learning reasoning paths over semantic graphs for video-grounded dialogues. In: Proceedings of the 9th International Conference on Learning Representations. 2021
|
20 |
X, Zhao Y, Wang C, Tao C, Wang D Zhao . Collaborative reasoning on multi-modal semantic graphs for video-grounded dialogue generation. In: Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022. 2022, 5988−5998
|
21 |
W X, Zhao K, Zhou J, Li T, Tang X, Wang Y, Hou Y, Min B, Zhang J, Zhang Z, Dong Y, Du C, Yang Y, Chen Z, Chen J, Jiang R, Ren Y, Li X, Tang Z, Liu P, Liu J Y, Nie J R Wen . A survey of large language models. 2023, arXiv preprint arXiv: 2303.18223
|
22 |
B, Min H, Ross E, Sulem A P B, Veyseh T H, Nguyen O, Sainz E, Agirre I, Heintz D Roth . Recent advances in natural language processing via large pre-trained language models: a survey. ACM Computing Surveys, 2024, 56( 2): 30
|
23 |
H, Le S C H Hoi . Video-grounded dialogues with pretrained generation language models. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020, 5842−5848
|
24 |
Z, Li Z, Li J, Zhang Y, Feng J Zhou . Bridging text and video: a universal multimodal transformer for audio-visual scene-aware dialog. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 2476–2483
|
25 |
A, Radford J, Wu R, Child D, Luan D, Amodei I Sutskever . Language models are unsupervised multitask learners. OpenAI blog, 2019, 1(8): 9
|
26 |
A, Radford J W, Kim C, Hallacy A, Ramesh G, Goh S, Agarwal G, Sastry A, Askell P, Mishkin J, Clark G, Krueger I Sutskever . Learning transferable visual models from natural language supervision. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 8748−8763
|
27 |
J, Li D, Li S, Savarese S Hoi . BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 814
|
28 |
H, Touvron L, Martin K, Stone P, Albert A, Almahairi Y, Babaei N, Bashlykov S, Batra P, Bhargava S, Bhosale D, Bikel L, Blecher C C, Ferrer M, Chen G, Cucurull D, Esiobu J, Fernandes J, Fu W, Fu B, Fuller C, Gao V, Goswami N, Goyal A, Hartshorn S, Hosseini R, Hou H, Inan M, Kardas V, Kerkez M, Khabsa I, Kloumann A, Korenev P S, Koura M A, Lachaux T, Lavril J, Lee D, Liskovich Y, Lu Y, Mao X, Martinet T, Mihaylov P, Mishra I, Molybog Y, Nie A, Poulton J, Reizenstein R, Rungta K, Saladi A, Schelten R, Silva E M, Smith R, Subramanian X E, Tan B, Tang R, Taylor A, Williams J X, Kuan P, Xu Z, Yan I, Zarov Y, Zhang A, Fan M, Kambadur S, Narang A, Rodriguez R, Stojnic S, Edunov T Scialom . Llama 2: open foundation and fine-tuned chat models. 2023, arXiv preprint arXiv: 2307.09288
|
29 |
The Vicuna Team. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatGPT quality. See vicuna. lmsys. org website (accessed 14 April 2023), 2023, 2(3): 6
|
30 |
K, Li Y, He Y, Wang Y, Li W, Wang P, Luo Y, Wang L, Wang Y Qiao . VideoChat: chat-centric video understanding. 2023, arXiv preprint arXiv: 2305.06355
|
31 |
M, Maaz H, Rasheed S, Khan F S Khan . Video-chatGPT: towards detailed video understanding via large vision and language models. 2023, arXiv preprint arXiv: 2306.05424
|
32 |
H, Zhang X, Li L Bing . Video-LLaMA: an instruction-tuned audio-visual language model for video understanding. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2023, 543−553
|
33 |
L Perlovsky . Language and cognition interaction neural mechanisms. Computational Intelligence and Neuroscience, 2011, 2011: 454587
|
34 |
R, Hong D, Liu X, Mo X, He H Zhang . Learning to compose and reason with language tree structures for visual grounding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44( 2): 684–696
|
35 |
W, Lin J, Chen J, Mei A, Coca B Byrne . Fine-grained late-interaction multi-modal retrieval for retrieval augmented visual question answering. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 990
|
36 |
S, Yoon E, Yoon H S, Yoon J, Kim C D Yoo . Information-theoretic text hallucination reduction for video-grounded dialogue. In: Proceedings of 2022 Conference on Empirical Methods in Natural Language Processing. 2022, 4182−4193
|
37 |
L, Wang C, Ma X, Feng Z, Zhang H, Yang J, Zhang Z, Chen J, Tang X, Chen Y, Lin W, Zhao Z, Wei J Wen . A survey on large language model based autonomous agents. Frontiers of Computer Science, 2024, 18( 6): 186345
|
38 |
P, Xu X, Zhu D A Clifton . Multimodal learning with transformers: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45( 10): 12113–12132
|
39 |
J, Zhang J, Huang S, Jin S Lu . Vision-language models for vision tasks: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46( 8): 5625–5644
|
40 |
Y, Yang J, Guo G, Li L, Li W, Li J Yang . Alignment efficient image-sentence retrieval considering transferable cross-modal representation learning. Frontiers of Computer Science, 2024, 18( 1): 181335
|
41 |
A Q, Jiang A, Sablayrolles A, Roux A, Mensch B, Savary C, Bamford D S, Chaplot Las Casas D, De E B, Hanna F, Bressand G, Lengyel G, Bour G, Lample L R, Lavaud L, Saulnier M A, Lachaux P, Stock S, Subramanian S, Yang S, Antoniak Scao T, Le T, Gervet T, Lavril T, Wang T, Lacroix Sayed W El . Mixtral of experts. 2024, arXiv preprint arXiv: 2401.04088
|
42 |
J, Cen C, Wu X, Liu S, Yin Y, Pei J, Yang Q, Chen N, Duan J Zhang . Using left and right brains together: Towards vision and language planning. 2024, arXiv preprint arXiv: 2402.10534
|
43 |
A, Blattmann T, Dockhorn S, Kulal D, Mendelevitch M, Kilian D, Lorenz Y, Levi Z, English V, Voleti A, Letts V, Jampani R Rombach . Stable video diffusion: scaling latent video diffusion models to large datasets. 2023, arXiv preprint arXiv: 2311.15127
|
44 |
A, Dosovitskiy L, Beyer A, Kolesnikov D, Weissenborn X, Zhai T, Unterthiner M, Dehghani M, Minderer G, Heigold S, Gelly J, Uszkoreit N Houlsby . An image is worth 16x16 words: transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations. 2021
|
45 |
S, Khan M, Naseer M, Hayat S W, Zamir F S, Khan M Shah . Transformers in vision: a survey. ACM computing surveys (CSUR), 2022, 54( 10s): 200
|
46 |
E, Jang S, Gu B Poole . Categorical reparameterization with gumbel-softmax. In: Proceedings of the 5th International Conference on Learning Representations. 2017
|
47 |
C J, Maddison A, Mnih Y W Teh . The concrete distribution: a continuous relaxation of discrete random variables. In: Proceedings of the 5th International Conference on Learning Representations. 2017
|
48 |
Y, Niu H, Zhang M, Zhang J, Zhang Z, Lu J R Wen . Recursive visual attention in visual dialog. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 6672−6681
|
49 |
F Pulvermüller . Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology, 2018, 160: 1–44
|
50 |
R, Müller S, Kornblith G Hinton . When does label smoothing help? In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 422
|
51 |
A, Goyal A, Lamb Y, Zhang S, Zhang A, Courville Y Bengio . Professor forcing: a new algorithm for training recurrent networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016, 4608−4616
|
52 |
H, Le C, Sankar S, Moon A, Beirami A, Geramifard S Kottur . DVD: a diagnostic dataset for multi-step reasoning in video grounded dialogue. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021, 5651−5665
|
53 |
G A, Sigurdsson G, Varol X, Wang A, Farhadi I, Laptev A Gupta . Hollywood in homes: Crowdsourcing data collection for activity understanding. In: Proceedings of the 14th European Conference on Computer Vision. 2016, 510−526
|
54 |
H, Alamri C, Hori T K, Marks D, Batra D Parikh . Audio visual scene-aware dialog (AVSD) track for natural language generation in DSTC7. In: Proceedings of DSTC7 at AAAI2019Workshop. 2018
|
55 |
C, Hori A, Cherian T, Hori T K Marks . Audio visual scene-aware dialog (AVSD) track for natural language generation in DSTC8. In: Proceedings of AAAI-DSTC8 Workshop. 2020
|
56 |
H, Le N, Chen S Hoi . VGNMN: video-grounded neural module networks for video-grounded dialogue systems. In: Proceedings of 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022, 3377−3393
|
57 |
H, Le D, Sahoo N, Chen S C H Hoi . BiST: bi-directional spatio-temporal reasoning for video-grounded dialogues. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020, 1846−1859
|
58 |
Z, Chen H, Liu Y Wang . DialogMCF: multimodal context flow for audio visual scene-aware dialog. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 32: 753–764
|
59 |
R, Zhang J, Han C, Liu P, Gao A, Zhou X, Hu S, Yan P, Lu H, Li Y Qiao . LLaMA-Adapter: efficient fine-tuning of language models with zero-init attention. 2023, arXiv preprint arXiv: 2303.16199
|
60 |
K, Papineni S, Roukos T, Ward W J Zhu . BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002, 311−318
|
61 |
S, Banerjee A Lavie . METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. 2005, 65−72
|
62 |
C Y Lin . ROUGE: a package for automatic evaluation of summaries. In: Proceedings of the Text Summarization Branches Out. 2004, 74−81
|
63 |
R, Vedantam Zitnick C, Lawrence D Parikh . CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4566−4575
|
64 |
T, Zhang V, Kishore F, Wu K Q, Weinberger Y Artzi . BERTScore: evaluating text generation with BERT. In: Proceedings of the 8th International Conference on Learning Representations. 2020
|
65 |
R, Girdhar D Ramanan . CATER: a diagnostic dataset for compositional actions & TEmporal reasoning. In: Proceedings of the 8th International Conference on Learning Representations. 2020
|
66 |
I, Serban A, Sordoni Y, Bengio A, Courville J Pineau . Building end-to-end dialogue systems using generative hierarchical neural network models. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016
|
67 |
H, Le N, Chen S Hoi . Multimodal dialogue state tracking. In: Proceedings of 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022, 3394−3415
|
68 |
J L Fleiss . Measuring nominal scale agreement among many raters. Psychological Bulletin, 1971, 76( 5): 378–382
|
69 |
Heilbron F, Caba V, Escorcia B, Ghanem Niebles J Carlos . ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 961−970
|
70 |
I, Loshchilov F Hutter . Decoupled weight decay regularization. In: Proceedings of the 7th International Conference on Learning Representations. 2019
|
71 |
J, Li D, Li C, Xiong S C H Hoi . Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In: Proceedings of the International Conference on Machine Learning. 2022, 12888−12900
|
72 |
M, Bain A, Nagrani G, Varol A Zisserman . Frozen in time: a joint video and image encoder for end-to-end retrieval. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, 1708−1718
|
73 |
A, Paszke S, Gross F, Massa A, Lerer J, Bradbury G, Chanan T, Killeen Z, Lin N, Gimelshein L, Antiga L, Antiga A, Desmaison A, Köpf E, Yang Z, DeVito M, Raison A, Tejani S, Chilamkurthy B, Steiner L, Fang J, Bai S Chintala . PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 721
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|